
Tile-Based Texture Mapping on Graphics Hardware

Li-Yi Wei
NVIDIA Corporation

(a) Sample
Texture

(b) Texture Tiles
(c) Packed Tiles

(d) Output Virtual Texture

Figure 1: Overview of our system. Given a sample texture (a), we first construct a set of texture tiles [Cohen et al. 2003] (b) so that adjacent tiles have
continuous pattern across shared edges. We pack the tiles into a single texture map (c) and store it on a graphics processor. This texture map can then be
sampled and filtered via a fragment program to support an arbitrarily large virtual texture (d) without physical storage.

Abstract

Texture mapping has been a fundamental feature for commodity
graphics hardware. However, a key challenge for texture mapping
is how to store and manage large textures on graphics processors.
In this paper, we present a tile-based texture mapping algorithm by
which we only have to physically store a small set of texture tiles in-
stead of a large texture. Our algorithm generates an arbitrarily large
and non-periodic virtual texture map from the small set of stored
texture tiles. Because we only have to store a small set of tiles, it
minimizes the storage requirement to a small constant, regardless
of the size of the virtual texture. In addition, the tiles are generated
and packed into a single texture map, so that the hardware filtering
of this packed texture map corresponds directly to the filtering of
the virtual texture. We implement our algorithm as a fragment pro-
gram, and demonstrate performance on latest graphics processors.

Summary

Texture mapping is a technique to represent surface details in com-
puter rendered images without adding geometric complexity. Tex-
ture mapping has been a standard feature for recent consumer-level
graphics hardware. Main cost of texture mapping on graphics hard-
ware comes from the memory for texture storage, as well as the
bandwidth to transfer and access those textures. For applications
that use large amounts of textures, the storage or bandwidth require-
ments may prohibit real-time performance on graphics hardware.

One possible solution to address these problems is texture com-
pression. However, texture compression techniques existing to-
day are designed and optimized mainly for general images and
may achieve sub-optimal compression ratio for textures that contain
repetitive patterns. Even the most basic texture synthesis algorithms
could beat the compression ratio compared to the texture compres-
sion method. Nevertheless, when it comes to real time applications
on the graphics hardware, most texture synthesis algorithms are of-
ten too slow or too complex.

We adopt a different approach by creating a large virtual texture

as a stochastic tiling of a small set of texture tiles. Specifically we
use Wang Tiles [Cohen et al. 2003] as the basic texturing primitive
in our system. Unlike [Cohen et al. 2003], which is only at the level
of software implementation, ours allows the texture to be stored and
accessed entirely within the graphics hardware.

Here is an overview of our system, with full details described in
[Wei 2004]. At a preprocess step, we generate a set of Wang Tiles
as described in [Cohen et al. 2003], and pack these tiles into a single
texture map. We propose a tile-packing scheme that ensures correct
mipmap filtering when a texel is fetched from this packed texture
map. During the run time, for each texture request (s, t), we first
determine which input tile it lands at based on the position of (s, t)
within the output texture. We then compute the relative offset of
(s, t) within that input tile, and fetch the corresponding texel from
the packed texture map. Since out packing scheme supports correct
mipmap filtering, the fetched input texel will be the same as a texel
fetched from a large, physically stored texture map.

We have implemented our algorithm as a Cg fragment program.
The performance measured on a 350 MHz Geforce FX 5600 graph-
ics processor is 20 million trilinearly-filtered texture samples per
second without any hand optimized assembly code. The speed and
storage requirements of our algorithm remain roughly constant re-
gardless of the size of the output virtual texture. In contrast, the
performance of traditional texture map degrades with increasing
texture sizes, and most graphics chips impose an upper limit on
the available texture size. (The maximum texture size is 4K � 4K
pixels on a Geforce FX 5600 GPU.)

Acknowledgements : I would like to thank Chung-Hui Chao for
improving the writing style of this paper.

References
COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003. Wang tiles for

image and texture generation. ACM Transactions on Graphics 22, 3 (July), 287–
294.

WEI, L.-Y., 2004. Tile-based texture mapping on graphics hardware. Submitted to
Graphics Hardware 2004.


