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Figure 1: Object placement by multi-class blue noise sampling. Our algorithms can produce both uniform (middle) and adaptive (right) sampling results.

Abstract
Sampling is a core process for a variety of graphics applications.
Among existing sampling methods, blue noise sampling remains
popular thanks to its spatial uniformity and absence of aliasing ar-
tifacts. However, research so far has been mainly focused on blue
noise sampling with a single class of samples. This could be insuf-
ficient for common natural as well as man-made phenomena requir-
ing multiple classes of samples, such as object placement, imaging
sensors, and stippling patterns.

We extend blue noise sampling to multiple classes where each in-
dividual class as well as their unions exhibit blue noise characteris-
tics. We propose two flavors of algorithms to generate such multi-
class blue noise samples, one extended from traditional Poisson
hard disk sampling for explicit control of sample spacing, and an-
other based on our soft disk sampling for explicit control of sample
count. Our algorithms support uniform and adaptive sampling, and
are applicable to both discrete and continuous sample space in ar-
bitrary dimensions. We study characteristics of samples generated
by our methods, and demonstrate applications in object placement,
sensor layout, and color stippling.

Keywords: multi-class, blue noise, sampling, Poisson hard/soft
disk, dart throwing, relaxation

1 Introduction
Sampling is important for a variety of graphics applications, includ-
ing rendering, imaging, and geometry processing. Although differ-

ent applications may favor different sampling patterns, blue noise
sampling remains quite popular and is widely adopted. Inspired by
the distribution of primate retina cells [Yellott 1983], a blue noise
distribution contains samples that are randomly located but remain
spatially uniform. The resulting sample set has a blue noise power
spectrum, with a signature lack of low frequency energy and struc-
tural residual peaks. Beyond a blue noise power spectrum, addi-
tional desiderata for graphics applications include support for adap-
tive/importance sampling, efficient computation, as well as the abil-
ity to place samples in both discrete and continuous sample spaces.

Due to its importance, blue noise sampling has been researched ex-
tensively [Cook 1986; Mitchell 1987; McCool and Fiume 1992;
Ostromoukhov et al. 2004; Jones 2006; Dunbar and Humphreys
2006; Kopf et al. 2006; Ostromoukhov 2007; Bridson 2007; White
et al. 2007; Wei 2008; Fu and Zhou 2008; Balzer et al. 2009; Cline
et al. 2009]. However, prior methods are mainly concerned about a
single class of samples, and thus are not directly applicable to a va-
riety of natural or man-made phenomena involving multiple classes
of samples, such as the distribution of cone and rod cells in human
retinas, the placement of multiple categories of objects, and the us-
age of multiple colored dots for stippling. In these situations, it is
often desirable to have each individual class of samples as well as
their union to exhibit blue noise distribution. Unfortunately, such
simultaneous blue noise properties across multiple classes of sam-
ples are not guaranteed by previous single-class sampling methods.
See Figure 2 for an example.

We present multi-class blue noise sampling algorithms that not only
guarantee a blue noise spectrum for each individual class as well as
their unions, but also allow samples to be placed in both discrete
and continuous sample spaces. Our methods also support adaptive
sampling and arbitrary sample space dimensionality.

To support different application scenarios, we present two flavors
of algorithms: one derived from Poisson hard disk sampling [Cook
1986] for explicit control of sample spacing, and another based
on our soft disk sampling for explicit control of sample count as
in relaxation [Lloyd 1982]. (In a nutshell, a hard disk, centered
on each sample, can neither deform nor intersect another, while
a soft disk can intersect another, but subject to an energy penalty
which, when minimized, produces uniform distribution.) Our main
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Figure 2: Comparison between single- and multi-class blue noise sam-
pling. The top row is produced by applying single-class dart throwing to
individual classes, but the total set is highly non-uniform. The middle row
is produced by applying single-class dart throwing to the total set, but the
individual classes are highly non-uniform. Our approach produces samples
that exhibit blue noise distribution for each class as well as the total set.
Each class contains ∼650 samples generated with r = 0.02.

idea is to extend single-class dart throwing for multi-class soft/hard
disk sampling by replacing the spacing parameter r in the former
with a c × c symmetric matrix r for c sample classes. Since many
blue-noise sampling methods are descendants of these two seminal
algorithms [Lloyd 1982; Cook 1986] with different quality, per-
formance, and usage tradeoffs, having multi-class extensions with
both flavors could benefit different applications. Several such ap-
plications we show include object distribution [Cohen et al. 2003;
Lagae and Dutré 2005], stippling [Kopf et al. 2006; Balzer et al.
2009], sensor layout and color filter design [Ben Ezra et al. 2007],
involving both continuous/discrete sample space, uniform/adaptive
sampling, control for sample spacing/count, and preferences for
spatial-uniformity/spectrum-quality.

Our method is related to color halftoning and especially vector error
diffusion [Baqai et al. 2005; Pang et al. 2008], which can also pro-
duce multiple classes of blue noise samples. However, our method
differs from color halftoning in several significant ways. First of
all, halftoning methods are mainly about computing colors for a
given set of discrete samples, not for general purpose sampling in
graphics that might require computing both color and position in-
formation in either a discrete or continuous domain. For halftoning
methods that rely on limited neighborhood sizes such as dithering
(predetermined masks) or error diffusion (predetermined distribu-
tion coefficients), such regular discretization could be undesirable
(see e.g. [Alliez et al. 2003; Ostromoukhov et al. 2004]). Sim-
ply increasing the output resolution may not eliminate these dis-
cretization artifacts because this would reduce the effective spatial
extent of the fixed neighborhoods. Thus, even in the traditional sin-
gle class setting, halftoning is not a replacement for general blue
noise sampling. Furthermore, even though certain halftoning tech-
niques like error diffusion have implied blue noise properties, there
is no guarantee that this will be carried over in the multi-class set-
ting. To our knowledge, the best halftoning methods for generating
multi-class blue noise samples rely on iterative optimization (e.g.
the pioneering work of [Wang and Parker 1999]), which is often

slow/complex and restricted to uniform/regular/discrete sampling.

2 Multi-Class Hard Disk Sampling
Dart throwing is a classical algorithm [Cook 1986] for Poisson hard
disk sampling, a particular kind of blue noise distribution where
samples are not only randomly and uniformly distributed but re-
main at least a minimum distance r away from each other. In dart
throwing, a trial sample is drawn randomly from the entire domain.
If the sample is not within a user-specified distance r from any other
existing samples, it is accepted. Otherwise, it is rejected. This pro-
cess is repeated until reaching certain termination criteria, e.g. a
target number of samples and/or a maximum number of trials.

Our multi-class hard disk sampling algorithm follows a similar pro-
cess, with necessary extensions to handle multiple classes of sam-
ples. Specifically, instead of a single number r, the user specifies
a set of numbers {ri}i=0:c−1 for the c classes of samples. During
the sample generation process, instead of checking whether a new
trial sample is at least r away from all existing samples, we use
a (symmetric) c × c matrix r for conflict check, where two sam-
ples in classes k and j have to be at least r(k, j) away from each
other. This r-matrix is built from {ri} with each diagonal entry
r(i, i) = ri. Finally, we also need to determine the class for each
new trial sample. Below we describe the algorithm in detail.

2.1 Sample class

For multi-class sampling, we have to decide from which class to
sample for the next trial. To ensure that each class is well sampled
throughout the entire process, we always pick the next trial sample
from the class that is currently most under-filled. We measure
this via fill rate, defined as the number of existing samples for a
particular class over the target number of samples for that class. To
maintain an equal fill rate across different classes, we define N i,
the target sample number of class i, as follows:

N i = N

1
rni∑c−1
j=0

1
rnj

(1)

where N is the total number of target samples, n the sample space
dimension, and {ri} the specified per-class minimum distances.
Not maintaining equal fill rates among all classes can easily lead
to non-uniform sample distribution.

2.2 Sample control

To ensure easy usage and a uniform sample distribution, it is desir-
able to generate the classes together (instead of one after another)
and maintain a consistent fill rate among different classes through-
out the sampling process. (We present a more detailed analysis in
Section 4.) However, always drawing the next trial sample from the
most under-filled class (Section 2.1) alone is not enough to achieve
this goal, as it may be unable to find a new sample not in conflict
with existing ones. This can happen quite early in the process when
the output distribution is far from being uniform, so we cannot sim-
ply stop there. One possible remedy is to accept a trial sample s if
it fails to be accepted for the most under-filled class but succeeds
for another one. However, as shown in the left case of a simple 2-
class experiment in Figure 3, even though the classes might main-
tain consistent fill-rates throughout the early part of the process, in
the end the fill-rates may become unbalanced as eventually it be-
comes difficult for the class with a larger r value to compete with
another with smaller r.

Another possibility is to tune the relative probability to sample from
each class to achieve the desired fill rates at the end of the pro-
cess, as shown in the middle case of Figure 3 (notice the two curves
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Figure 3: Sampling history comparison. Here, we plot the fill-rates for two
classes throughout the sampling process (with the number of trials normal-
ized to [0 1]). r0 = 0.02 and r1 = 0.00756. The left case is generated by
always drawing a new sample from the most under-filled class, the middle
case with a constant class probability p0 = 0.425 and p1 = 0.575, and the
right case by our final algorithm that allows removal of samples. We also
measure # of trials as well as # of accepted, rejected, and killed samples
(averaged over 10 runs). Notice that all 3 cases have the same final number
of samples 10366 (= 11389.7 accepted - 1023.7 killed for the right case).

meet together at the end). However, there are two problems for this
method. First, it is very tricky to come up with the right class proba-
bilities; we estimated the numbers for the middle case in Figure 3 by
exhaustively trying a vast number of possible combinations. Sec-
ond, due to the stochastic nature of dart throwing, even with per-
fectly tuned probabilities, there is no guarantee that a different run
with the same parameters would reach the same end condition, i.e.
the two curves might still not meet in the end.

To resolve these issues, we allow the removal of existing samples
ns that are in conflict with a new trial sample s if (1) it is impossible
to add another sample to class cs (this can be figured out by track-
ing the still available spaces [Dunbar and Humphreys 2006] or by
using a simple timeout mechanism), (2) each s′ ∈ ns (i.e. these in
conflict with s) belongs to a class cs′ with a smaller r than the class
cs for s and (3) each cs′ is at least as filled as cs. See Removable()
in Program 1. Intuitively, this means that we only remove samples
from classes that are easier to sample from (i.e. having a smaller r
value) and are already as filled as the current class.

function bool Removable(ns, s, r)
foreach s′ ∈ ns

if r(cs′ , cs′ ) ≥ r(cs, cs) or FillRate(cs′ ) < FillRate(cs)
return false

return true

Program 1: Can we remove the set of conflict samples ns for s?

Although it may sound unusual to allow removal of existing sam-
ples, we have found this essential to maintain an equal fill-rate
across all classes at all times. As shown in the right case of Fig-
ure 3, the two classes maintain consistent fill-rate throughout the
sampling process. Furthermore, even though killing samples may
in theory increase the computation, in practice we have found that
the number of killed samples usually far below the number of ac-
cepted and rejected samples. In fact, as shown in Figure 3, the
efficiency brought by the sample removal may actually reduce the
total number of trials, making the process even more efficient.

2.3 r-matrix construction

As discussed above, we fill the diagonal entries r(i, i) of r as ri,
the user specified intra-class minimum distance. But how should
we compute the off-diagonal entries of r? If we fill the off-diagonal
entries with 0, our algorithm will reduce to decoupled single-class
sampling (i.e. the top row in Figure 2). On the other hand, if we
treat the samples as geometric disks and define the off-diagonal en-

function r← BuildRMatrix({ri}i=0:c−1)

// {ri}: user specified per-class values
// c: number of classes
for i = 0 to c-1

r(i, i)← ri // initialize diagonal entries
end
sort the c classes into priority groups {Pk}k=0:p−1 with decreasing ri
// classes in the same priority group have identical r values
C ← ∅ // the set of classes already processed
D← 0 // the density of the classes already processed
for k = 0 to p-1

C ← C
⋃

Pk
foreach class i ∈ Pk

D←D + 1
rni

// n is the dimensionality of the sample space

end
foreach class i ∈ Pk

foreach class j ∈ C
if i 6= j

r(i, j)← r(j, i)← 1
n√
D

// r is symmetric
end

end
end
return r

Program 2: r-matrix construction for uniform sampling.

tries r(k, j) as rk+rj
2

, we will get results as in the middle row of
Figure 2, where the individual classes can be highly non-uniform
caused by samples in other classes “getting in the way”.

Our algorithm for computing r is shown in Program 2. To under-
stand how it works, let’s start with two classes (c = 2) only. Since
each class i will have expected sample density proportional to 1

rni
in a n-dimensional sample space, the off-diagonal entries rφ of r
should be computed via the following formula so that the total set
has the expected density

∑c−1
i=0

1
rni

:

1

rnφ
=

c−1∑
i=0

1

rni
(2)

The bottom row in Figure 2 is produced by r constructed in this
fashion. It can be seen, both experimentally and intuitively, that
an rφ value deviating from the one computed via Equation 2 will
produce worse results, i.e. a smaller value will produce a less uni-
form total set as in the top row of Figure 2, whereas a larger value
will produce less uniform individual classes as in the middle row
of Figure 2. The method described above could also be applied
to compute a uniform off-diagonal r matrix entry value for c > 2
classes if they share an identical r value.

However, for c > 2 classes with different r values, computing a
uniform off-diagonal entry value via Equation 2 will produce sub-
optimal results. Recall that a Poisson disk sample set possesses
a blue noise power spectrum, with an inner ring radius 1

r
within

which the power spectrum has very low energy. However, in multi-
class blue noise sampling, the power spectrum of a class cj with
parameter rj could interfere with the power spectrum of another
class ci with rj > ri, as the noise/energy outside frequency 1

rj
of

class cj would fall within the inner ring 1
ri

of class ci. Thus, to
minimize the pollution inside its inner ring 1

ri
, each class ci would

need to ensure that the union of all classes {cj} with rj > ri has
as uniform a joint distribution as possible.

We achieve this goal by the algorithm described in Program 2. Be-
low is an intuitive explanation. We begin by assigning the diagonal
entries of r from the user specified parameters {ri}. To compute
the off-diagonal entries, we first sort the classes by their r values
in a decreasing order. We then add them in that order to the set of
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Note that the peak energy of c0 falls into the
inner ring of c1, since f0 < f1 (r0 > r1).

already considered classes C, while simultaneously computing the
off-diagonal entries that involve the newly added classes. The com-
putation is performed to ensure that at any moment the set C is as
uniform as possible, according to the merit of Equation 2.

Discussion An r-matrix built by the aforementioned method
can exhibit discontinuous changes in the off-diagonal entries when
the r values of a group of classes change from being identical to
slightly different. However, we have not found this to impact dis-
tribution quality. For real application scenarios, we believe it will
be more common to use classes with either identical or sufficiently
different r values (to avoid this issue). In addition, the user can
choose to group the classes differently from the default behavior in
Program 2.

2.4 Adaptive sampling

So far we have described multi-class dart throwing only for uni-
form sampling. Here we describe how to extend it for adaptive
sampling. The main difference between uniform and adaptive sam-
pling is that the user-specified constants {ri}i=0:c−1 for the former
could be general spatially-varying functions {ri(.)}i=0:c−1 for the
latter. This requires us to make corresponding spatially-varying ex-
tensions for the r-matrix, the conflict check metric, and the criterion
in determining if a sample s′ is removable relative to s:

• For building r-matrix, we simply apply the algorithm in
Program 2 for every sample location s, i.e. r(s) =
BuildRMatrix({ri(s)}i=0:c−1).

• For conflict check, we use r̂(s, s′) = r(s,cs,cs′ )+r(s′,cs′ ,cs)
2

instead of r(cs, cs′). This is analogous to the use of r(s)+r(s
′)

2
instead of r for single-class adaptive sampling.

• For Removable(), we use the sample location s in addition to
its class number cs in Program 1; see Program 3.

function bool Removable(ns, s, r(.))
foreach s′ ∈ ns

if r(s′, cs′ , cs′ ) ≥ r(s, cs, cs) or FillRate(cs′ ) < FillRate(cs)
return false

return true

Program 3: Removable() for adaptive sampling. The colored portions
highlight differences from the uniform sampling algorithm in Program 1.

3 Multi-Class Soft Disk Sampling
In Section 2 we extend single-class hard disk sampling for multiple
classes of samples. Here, we extend the method further by plac-
ing a soft disk centered on each sample. These soft disks behave
like energy blobs with local support. They do not have hard bound-
aries and thus can intersect each other, but the amount of overlap
is subject to an energy penalty which, when minimized, produces a
uniform distribution. The main advantage of our soft disk sampling
is that it serves as a good complement to hard disk sampling, of-
fering explicit control for sample count ({Ni}i=0:c−1 for c classes)
while producing distributions with more spatial uniformity. Even
though relaxation [Lloyd 1982] can typically achieve these bene-
fits, we have found that it might not produce good results for the
multi-class setting.

Below, we define the notion of a soft disk and an energy function
measuring distribution uniformity, followed by a soft dart throwing
method that minimizes this energy for blue noise sampling.

3.1 Uniformity measurement

We quantify sample uniformity via the following formula:

E(s) =
∑
s′∈S

ω(cs, cs′)φs′,σ(s,s′)(s)

φs′,σ(s,s′)(s) = e
− (s−s′)2

σ(s,s′)2 (3)

where s is the query sample for energy value, s′ any sample in the
sample set S, ω(cs, cs′) a user specifiable scalar weight factor for
class combination (cs, cs′), φs′,σ a Gaussian blob with center s′

and width σ that depends on the sample pair (s, s′). Intuitively,
E(.) tends to be smaller for an S with a more uniform sample dis-
tribution. Below we provide more details about the parameters:

ω This parameter ω(cs, cs′) allows the user to specify different
importance to different class combinations. We have found it
adequate to simply set ω = 1, treating all classes equally.

σ The width σ of a blob φs′,σ(s,s′)(s) depends not only on its
center s′ but also the query sample s. This follows natu-
rally from our multi-class hard disk sampling algorithm pre-
sented in Section 2, as the desired spacing between two sam-
ples s′ and s depends on not only their respective class ids but
also their locations for adaptive sampling. Intuitively, σ(s, s′)
should be proportional to r̂(s, s′) in Section 2.4, so that the
blob φs′,σ(s,s′)(s) properly measures the energy according to
the desired distance between s and s′. In our experiments we
have found that σ(s, s′) = 0.25× r̂(s, s′) works well.

r To evaluate r̂ we will need to know the sample spacing param-
eters {ri}. These are not given explicitly in soft disk sam-
pling, but can be estimated from the specified sample counts
{Ni} by setting ri = ri,max, the average inter-sample dis-
tance computed from the maximum packing of Ni samples.

3.2 Soft dart throwing

One possible method to generate samples minimizing Equation 3 is
to extend the multi-class dart throwing algorithm in Section 2 for
soft disk samples. Our soft dart throwing algorithm is similar to
its hard counterpart, with the major difference being that instead
of rejecting a new trial sample s′ when it is too close to any exist-
ing samples, we always accept s′. This feature allows the user to
exactly control the final number of samples across all classes. To
help ensure the sample uniformity, we perform multiple attempts of
s′ and pick the one with minimum energy E(s′) among all trials.
(A similar idea is used in best candidate dart throwing [Mitchell
1991].) During the initial phase of the algorithm when the domain
Ω is sparsely populated, it might be wasteful to perform many tri-
als. To speed this up, the user can optionally specify a threshold
energy Et to allow early termination of trials when a trial sample
s′ with E(s′) < Et is found. We have found that Et = 0.01 works
well. Note that Equation 3 measures only spatial uniformity and
could favor a regular distribution. Our soft dart throwing method,
due to its stochastic nature, avoids such potential regularity.

4 Analysis
We use the methods in [Lagae and Dutré 2008] to analyze the spa-
tial and spectrum properties of sample distributions. For spatial
uniformity, we utilize the relative radius ρ = r

rmax
, where r is the

minimum spacing between any pair of samples and rmax is the av-
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Figure 5: Spectrum results for different number of classes. From top to
bottom (within each group): power spectrum, radial mean power, and radial
variance/anisotropy. Each column is produced with a different number of
classes c as indicated. For easy comparison, we overlay the ground truth
mean curve (c = 1) in green color with all other cases (c > 1).

erage inter-sample distance computed from the maximum packing
of a given number of samples. For spectrum analysis, we compute
the Fourier power spectrum and measure the radial mean and vari-
ance/anisotropy, all averaged over 10 runs.

Single-class soft dart throwing Under the single-class set-
ting, soft dart throwing produces results exhibiting good spatial uni-
formity with ρ = 0.75. The power spectrum analysis also confirms
the quality, as shown by the c = 1 case in Figure 5. Due to its
stochastic and non-iterative nature, soft dart throwing does not tend
to settle down into hexagonal shaped local minimums as in tradi-
tional Lloyd relaxation [Lloyd 1982] and thus could be used as an
alternative for applications that require an exact sample count.

Number of classes We start our analysis for multi-class sam-
pling with the simplest case where all the classes have the same
parameters, i.e. r for hard disk sampling and N for soft disk sam-
pling. As shown Figure 5, the multi-class statistics remain similar
to the single-class setting across a variety of c numbers.

As recommended by [Lagae and Dutré 2008], ρ should be in the
range [0.65 0.85] for single-class blue noise sampling. However,
for the multi-class setting, we have found that ρ ∈ [0.65 0.70] is
achievable but beyond that may require excessive number of tri-
als or iterations. Fortunately, this issue does not seem to worsen
progressively with the increasing number of classes; due to our
r-matrix construction algorithm, the inter-class r values decrease
with the increasing number of classes, thus they tend to cancel each
other out in terms of imposing additional constraints. All results
shown in the paper have ρ ≥ 0.67 unless indicated otherwise.

Non-uniformity Next we examine what happens if the classes
have different parameters. We start with the simplest case of only
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Figure 6: Total sample set distribution. For the radial mean plot, we
overlay the ground truth produced by single-class dart throwing as green
curves for easy comparison. Shown here are only hard disk results; the soft
disk ones have similar quality.

two classes as shown in Figure 7. We produce several sets of 2-
class sample sets with different r0 and r1 values so that the total is
a sample set with the same r value (where 1

rn
= 1

rn0
+ 1

rn1
). We

start with similar r0 and r1 on the left and with increasing disparity
towards the right. Here, we can observe several interesting facts:

• Class 0 remains indistinguishable from single-class sampling.
However, class 1 might deviate from the single-class results,
as manifested by the small “humps” between their radial mean
curves. These humps are caused by the spectrum peaks of
class 0, centered at frequency 1

r0
as discussed in Figure 4.

• The deviation between class 1 and ground truth is less obvious
when r0 and r1 are either sufficiently similar or sufficiently
dissimilar. For the former, the hump will happen around the
existing peak of class 1, making it non-obvious. For the latter,
class 0 simply has too few samples to have a major impact
on the power spectrum of class 1. However, even for the case
with maximum discrepancy (r0 = 0.02 and r1 = 0.0076) we
have not found noticeable differences in sampling results.

Class priority As we discussed in Section 2.2, generating all
classes together allows us to maintain consistent fill-rates and thus
distribution quality among all classes. Generating the classes se-
quentially does not allow us to do this, and would require us to
specify criteria for stopping the generation of one class and starting
another one. This might not be easy as it is very hard to predict
if an earlier class would over-constrain the generation of a later
one. Furthermore, generating the classes sequentially might ac-
tually harm the distribution quality; as illustrated in Figure 8, when
classes c0 and c1 are produced prior to c2, c2 might have little rooms
left, resulting in a non-uniform distribution. This effect is particu-
larly pronounced for the soft disk sampling case. However, we wish
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Figure 7: Spectrum results for
two classes with different r val-
ues. Here we show the hard disk
results for easy explanation; the
soft disk results have similar but
slightly more pronounced effects.
Each pair of columns is produced
together with different r0 and r1
values so that their total is a sam-
ple set with r = 0.01√

2
. For the

radial mean plots, we overlay the
single-class ground truth as green
curves for easy comparison.
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Figure 8: Class priority. Here we generate 3 classes of samples either
together (left group) or sequentially (right group). We use soft- rather than
hard-disk sampling due to more pronounced effects. In the radial mean
plots, the red/green curves correspond to multi/single-class results. Note
that generating the classes sequentially would introduce more low frequency
noise for the classes produced latter.

to emphasize that both our hard and soft disk sampling algorithms
can be used to generate the sample classes sequentially if the user
desires so.

Total sample set Figure 6 shows the power spectrums for the
total sample distribution from selected sets of results in Figure 5
and Figure 7. As shown, the power spectrums of the total sets stay
close to the ground truth blue noise profiles. The deviation is most
obvious when there are a small number of classes and/or when the
classes have similar r values. When there are a larger number of
classes, the probability that a sample has a neighbor in a differ-
ent class is higher, thus geometrically making the entire sample set
more similar to a single-class distribution; see the progression in the
top cases. When the classes have dissimilar r values, the class with
larger r has fewer samples to impact the overall power spectrum;
see the progression in the bottom cases.

Performance Using a simple grid/tree data structure [Bridson
2007; Wei 2008] for storing samples and checking conflicts, our
current implementations are able to achieve reasonable perfor-
mance, as tabulated in Table 1. For soft disk sampling, we usually
cut off the Gaussian blobs beyond 3σ, thus localizing all energy
updates and evaluations. The performance decreases with an in-
creasing number of classes since the sample placement is more con-
strained, incurring more computations during the generation pro-
cess. Since a grid/tree data structure allows us to perform the con-
flict check in constant time, the total time for generatingN samples
is χN , where χ is the ratio of the total number of trials overN . We

are not yet able to determine an accurate formula for χ since it de-
pends on not only the number of classes but also certain implemen-
tation details, e.g. how accurately the available space is tracked to
reduce futile trials. (We measure the timing in Table 1 via uniform
random sampling as in classical dart throwing without such empty-
space tracking.) We thus believe that χ could be better determined
along with more definite future accelerations of our algorithms.

# classes 1 2 3 4 5 6 7 8
hard disk 9.85 3.80 2.74 2.24 1.36 1.15 0.99 0.65
soft disk 0.23 0.17 0.135 0.13 0.13 0.12 0.086 0.084

Table 1: Performance of our algorithms. All performance numbers are in
K-samples/second, and measured on a laptop with a 2.50 GHz CPU + 2 GB
RAM. The 1-class case serves as a reference for others.

5 Applications
Here, we show several applications for multi-class blue noise sam-
pling. Depending on the particular application needs, either hard-
disk or soft-disk sampling may be more suitable. Specifically, the
former is better for applications that have strict sample spacing re-
quirement and are flexible with regard to the number of samples,
and the latter for applications that prefer more uniform spatial dis-
tribution and exact specification for the number of samples. Hard
disk sampling is also more natural for continuous sample spaces
whereas soft disk sampling suitable for both continuous and dis-
crete settings. In addition, hard dart throwing is usually computa-
tionally faster as it is easier to accelerate.

5.1 Object distribution

Uniform object placement is often desirable for both scientific (e.g.
biological distribution) and artistic (e.g. procedural texture [Lagae
and Dutré 2005]) applications. Such a uniform distribution can be
achieved by blue noise sampling [Cohen et al. 2003; Lagae and
Dutré 2005; Kopf et al. 2006], but existing methods do not explic-
itly consider the presence of multiple classes of objects. We can
apply our approach for this purpose. An example is shown Figure 1
for placing two classes of objects in either uniform or adaptive dis-
tribution. Due to the desire to keep minimum distances between
objects, we opt for hard disk sampling for this application. Our
method could also be applied to place 3D objects (e.g. flowers [Co-
hen et al. 2003]) for scene design or 2D motifs for pattern genera-
tion (e.g. [Lagae and Dutré 2005]).

5.2 Color stippling

In addition to object placement, blue noise sampling can also
be employed for stippling with visually pleasing pointillism ef-
fects (see e.g. [Kopf et al. 2006; Kim et al. 2008; Balzer et al.
2009]). However, existing stippling results are mostly black-and-
white since traditional blue noise sampling can handle only a single



Figure 9: Color stippling result. Using a color image (a corner from Seu-
rat’s “A Sunday Afternoon on the Island of La Grande Jatte”) as the input
importance field, our method produces an adaptive sample set with ∼290K
color dots in 7 classes (red, green, blue, cyan, magenta, yellow, black) over
a white background. (Note: this image might not show up well in print; try
it on a computer display and vary the viewing distance.)

class of samples. We can apply our algorithms for multi-color stip-
pling by using a color image as the input importance field, treat-
ing each color channel as a separate class and producing a multi-
class output sample set accordingly. Unlike color halftoning which
mainly targets discrete regular sample sets, our method allows sam-
ples to be placed anywhere and thus provides more of a free-style
pointillism effect. As shown in Figure 9, our method can produce
reasonably complex color stippling; the colored dots not only fol-
low the input importance field but also maintain a blue noise distri-
bution.

5.3 Sensor layout

The layout of a color sensor array determines the quality of the sam-
pling results as well as subsequent reconstruction algorithms, such
as super-resolution. The most widely used layouts usually deploy
the RGB sensor elements in a regular grid (or variations thereof);
as pointed out in [Ben Ezra et al. 2007], grid layouts are subject
to a variety of sampling and reconstruction issues, and the authors
recommended the use of Penrose pixels. However, as pointed out in
[Kopf et al. 2006; Lagae and Dutré 2008], a Penrose sample layout,
even after quality improvement via jittering [Ostromoukhov et al.
2004], still exhibits visible spectrum bias.

Following an analogous line of thinking, we wonder if it is possi-
ble to further improve the quality of Penrose pixel layout for color
sensors [Ben Ezra et al. 2007] via our approach, treating the RGB
sensors as three classes of samples. The comparison is shown in
Figure 10. For [Ben Ezra et al. 2007], we use the randomized 3-
coloring algorithm in [McClure 2002] to assign the RGB sensor
locations. For our result, we use soft disk sampling to specify the
exact number of samples. As shown, our result has no bias in the
power spectrum as well as no aliasing in a spatial sampling for the
zone-plate pattern, a commonly used stress test for evaluating sam-
pling quality [Kopf et al. 2006; Ostromoukhov 2007; Wei 2008].
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Figure 10: Comparison with Penrose pixels for RGB sensor layout. From
left to right: spatial sensor layout, power spectrum, and spatial sampling
via the zone-plate pattern. The spectrum results are produced by one of the
classes while the spatial sampling via all 3 classes.

5.4 Color filter array design

Penrose pixels [Ben Ezra et al. 2007] and our method would pro-
duce better spectrum quality than traditional regular grid sensor lay-
out. However, a regular layout is easier to fabricate, especially for
wiring [Ben Ezra et al. 2007]. We have found it possible to maintain
the regular layout for the sensor cells, but apply our technique to
de-regularize the color filter placement so that the spectrum quality
is still improved. This can be achieved by applying our multi-class
soft disk sampling algorithm to a pre-determined regular set of sam-
ples. Due to the desire to specify the exact number of samples per
(color channel) class, this is an application where soft-disk would
be more suitable than hard-disk sampling.

As shown in Figure 11, a regular layout (Bayer mosaic in that par-
ticular case) causes significant aliasing as expected. One possible
solution to reduce aliasing is to place the samples randomly. Even
though randomization cannot remove aliasing caused by the under-
lying regular grid structure, the sampling quality is still improved
by de-regularizing the color filter elements. However, this reduction
in aliasing is achieved at the expense of more noise. Our soft disk
approach, in contrast, reduces aliasing compared to a regular layout
while introducing less noise than a random layout. We have also
shown result produced by our hard disk approach with a discrete
sample domain. To ensure that all sensor elements are utilized, we
gradually decrease the r parameters throughout the sampling pro-
cess similar to [McCool and Fiume 1992]. As shown, even though
the hard disk result is better than random placement, it is still worse
than the soft disk one. Furthermore, hard disk sampling cannot
guarantee an exact number of samples per class.

6 Limitations and Future Work
We have mainly focused on the basic algorithms for multi-class
sampling and only lightly touched on the issues of acceleration.
Since our algorithms are extensions of dart throwing, we believe
they can benefit from a repertoire of previous acceleration tech-
niques, such as [Jones 2006; Dunbar and Humphreys 2006; White
et al. 2007; Wei 2008]. Our method is also applicable for construct-
ing multi-class sample tiles [Cohen et al. 2003; Ostromoukhov et al.
2004; Kopf et al. 2006; Lagae and Dutré 2006; Ostromoukhov
2007] as another way to save run-time computation.

Although we have only demonstrated results in 2D, our algorithm
is directly applicable to higher dimensional spaces [Bridson 2007;
Wei 2008] for scenarios like 3D object distribution. It would also
be interesting to extend our approach to sample non-Euclidean do-
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Figure 11: Color filter array design. From left to right: spatial filter array
layout, zoneplate sampling, and zoom-in of the low frequency corner. The
bottom 3 methods can remove aliasing caused by regular color layout, but
not aliasing by the underlying sensor grid (i.e. near the zoneplate corners).
Compared to other methods, our soft disk sampling produces more uniform
spatial layouts, translating to less noisy sampling results (right column).

mains such as manifold surfaces [Turk 1992; Fu and Zhou 2008;
Cline et al. 2009] for rendering and texturing applications.
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