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Abstract
Blue noise sampling is widely employed for a variety of imaging,
geometry, and rendering applications. However, existing research
so far has focused mainly on isotropic sampling, and challenges
remain for the anisotropic scenario both in sample generation and
quality verification. We present anisotropic blue noise sampling
to address these issues. On the generation side, we extend dart
throwing and relaxation, the two classical methods for isotropic
blue noise sampling, for the anisotropic setting, while ensuring both
high-quality results and efficient computation. On the verification
side, although Fourier spectrum analysis has been one of the most
powerful and widely adopted tools, so far it has been applied only
to uniform isotropic samples. We introduce approaches based on
warping and sphere sampling that allow us to extend Fourier spec-
trum analysis for adaptive and/or anisotropic samples; thus, we can
detect problems in alternative anisotropic sampling techniques that
were not yet found via prior verification. We present several appli-
cations of our technique, including stippling, visualization, surface
texturing, and object distribution.

Keywords: blue noise sampling, anisotropy, dart throwing, relax-
ation, spectrum analysis, stippling, texturing, rendering

1 Introduction
Sampling is important for a wide range of graphics applications in-
cluding imaging, rendering, and geometry processing. Although
different applications may favor different sampling methods, blue
noise sampling remains one of the most popular due to its unique
spatial and spectrum properties [Cook 1986; Mitchell 1987; Mc-
Cool and Fiume 1992; Dunbar and Humphreys 2006; Kopf et al.
2006; Ostromoukhov 2007; Wei 2008; Cline et al. 2009; Balzer
et al. 2009; Wei 2010]. In the spatial domain, blue noise samples
are randomly and uniformly distributed; this corresponds well to
a variety of natural phenomena (e.g., retina cell distribution [Yel-
lott 1983]) and has certain aesthetic appeal (e.g., stippling [Secord
2002; Hiller et al. 2003]). In the frequency domain, a blue noise
spectrum has a signature lack of low frequency energy and absence
of structural bias (hence the name blue noise). In essence, a blue
noise sampling produces better results by replacing low frequency
aliasing with high frequency noise, which tends to be less visually
objectionable. Due to its importance, blue noise sampling has been
widely studied with a variety of proposed methods, many of which
are certain variations or combinations of two classical algorithms:
dart throwing [Cook 1986] and relaxation [Lloyd 1983].

Despite the advances of blue noise sampling, except for rare excep-
tions (e.g., the pioneering work in [Feng et al. 2008]) most of these
methods produce only isotropic sample distributions. This could be

Figure 1: Anisotropic blue noise sampling. Applications include stippling,
texturing, vector field visualization, and object distribution.

insufficient for application scenarios that benefit from anisotropic
sampling. For example, in vector field visualization [Turk and
Banks 1996], since the glyphs (e.g., arrows) are often elongated, it
is more informative and visually pleasing to pack glyphs anisotrop-
ically instead of isotropically. In surface sampling, anisotropic
surface elements have been shown to be more suitable for certain
geometry processing applications [Alliez et al. 2003; Lévy and Liu
2010]. Furthermore, even for isotropic uniform surface sampling,
the process may still become anisotropic if conducted via a param-
eterization domain instead of the original surface domain (e.g., as
in [Alliez et al. 2002]) due to geometric distortion. Our anisotropic
blue noise sampling methods can be applied to the aforementioned
application scenarios, and provide better quality than prior tech-
niques (Figure 1). In addition to visualization and surface sam-
pling, other applications of our methods include stippling, surface
texturing, and 3D objects placement with anisotropic shapes and
distribution.

Since dart throwing and relaxation are the two commonly used
approaches for blue noise sampling, we extend both of them for
anisotropic sampling to provide a more general solution. We have
developed a clean and elegant method that can be applied to both:
replace the Euclidean distance metric with a Riemannian/geodesic
one. For example, in dart throwing, instead of measuring the dis-
tance between two samples via Euclidean distance during conflict
check as in isotropic sampling, we use a geodesic distance met-
ric. The precise nature of the geodesic distance is application de-
pendent, e.g., surface geodesics for manifold sampling or tensors
for image stippling, but otherwise the algorithm remains identi-
cal across different applications. We have found this methodology
to work better than alternative formulations, such as extending the
conflict metric for anisotropic sampling. Similarly, for relaxation,
we have found that the use of geodesic distance metrics allows us
to easily extend different flavors of methods, including basic Lloyd
relaxation [Lloyd 1983] and CCVT [Balzer et al. 2009].

Once anisotropic sample sets have been generated, we need a
method to properly evaluate their quality. For uniform isotropic
sampling, Fourier power spectrum has been demonstrated to be a
very effective evaluation method, especially for detecting biases
that are difficult to find by other approaches [Lagae and Dutré
2008]. However, a direct application of Fourier power spectrum for



a set of adaptive or anisotropic samples is not going to produce very
meaningful results, as the spatial or angular variations could clutter
vital information in the spectrum. To be able to apply Fourier spec-
trum analysis for anisotropic samples, we introduce two approaches
based on 2D warping and sphere surface sampling to produce sam-
ples in an anisotropic domain while verifying samples in a known
uniform isotropic one. These shed light on problems in previous
anisotropic sampling techniques (e.g., [Feng et al. 2008]) that are
not yet detected by existing verification methods.

2 Distance Metric
To carry on our discussion, we first describe our distance metric d,
a shared component between our anisotropic sampling algorithms
to be presented in Section 3.

2.1 Representation

To generate a sampling pattern, the user usually needs to specify
two kinds of metrics: the control metric r, and the distance metric
d. The control metric r reflects the user preferences of the sampling
pattern, such as density, adaptivity, or anisotropy. For the isotropic
case, it usually takes the form of minimum sample spacing in dart
throwing, or sample density in relaxation. The distance metric d
reflects properties of the underlying sample space Ω, essentially
defining the distance between any pairs of samples within Ω.

Here, we describe the duality between r and d, and suggest that it is
better to absorb r into d for both algorithm design and implemen-
tation. This results in a geodesic d formulation, caused by not only
the geometry of the underlying sample space but also the properties
of r. For clarity of presentation, we focus on dart throwing below,
as analogous arguments could be made for relaxation as well.

For uniform isotropic dart throwing, the user specifies a parameter
r, a constant dictating the minimum distance between pairs of sam-
ples. For adaptive isotropic sampling, the user specifies a scalar
spatially varying function r(s), which can be interpreted as the
diameter of the topological disk centered at sample s. Following
this line of classical formulation, we can deduce that for adaptive
anisotropic sampling, since the conflict metric r could in general
depend on both the relative distance and orientation between any
two samples s1 and s2, its most general form is r(s1, s2), specify-
ing the minimum required distance between any two samples.

Geodesic d. In the classical formulation via r above, the dis-
tance metric d(s1, s2) is the usual Euclidean distance. Even though
it is totally legitimate to just use Euclidean distance and let r absorb
all the application specific geometric complexities, we have found
a general form of r(s1, s2) more difficult to specify, analyze and
compute. Taking uniform surface sampling as an example, how are
we going to define r(s1, s2) between any two samples s1 and s2 if
we measure their distance d(s1, s2) via the Euclidean definition? A
more natural formulation would be to define d(s1, s2) via the sur-
face geodesic and let r be a global constant. For surface sampling,
this geodesic formulation may seem quite straightforward, but it
might not be so for other scenarios; we will give more examples on
formulations in Section 5 when presenting different applications.

Wrapping r into d. Furthermore, since we already incorpo-
rate anisotropy into d rather than r, we might as well include the
isotropic information for the adaptivity of r into d as well, and
simply use a constant for r. We can achieve this by replacing the
original distance by d

r
and replacing r with 1. This allows us to

wrap both the angular and distance information into d, resulting
in a cleaner algorithm formulation and code implementation. Fur-
thermore, a unified representation of d facilitates an approximation
for faster computation, as we shall see shortly in Section 2.2. One

consequence of this unified representation is that our new d might
become non-Euclidean if either the original distance is Riemannian
or the original r is non-uniform. Another consequence, as stated
above, is that r will no longer show up explicitly in our dart throw-
ing and relaxation algorithms. For example, to determine whether
two samples s and s′ are in conflict in dart throwing, we will use
the criterion d(s, s′) < 1 instead of d(s, s′) < r.

2.2 Approximation

Although it is possible to generate samples via our rigorous d def-
inition (see, e.g., [Sethian 1996; Weber et al. 2008]), it could be
overly complex and computationally demanding, as the problem
could be as challenging as calculating the geodesic distance be-
tween pairs of samples. Fortunately, we have found it sufficient
to approximate the geodesic distance from sample s1 to s2 with the
following distance metric (see [Labelle and Shewchuk 2003]):

d(s1, s2) =
√

(J(s1)(s2 − s1))T(J(s1)(s2 − s1)) (1)

where the superscript T indicates the transpose operator and J the
Jacobian (applied locally to the domain-specific function used to
determine the desired sample distance and anisotropy, e.g., the sur-
face for mesh sampling). Note that by considering the local
Jacobian, as s1 and s2 get closer, Equation 1 approaches the true
geodesic distance between the two samples. In general, as long as
J is smooth, or inversely, the desired sampling density is high, this
approximation is accurate. One crucial advantage of this approx-
imation is that it directly leads us to treat anisotropic samples as
ellipses, analogous to the use of geometric disks for isotropic dart
throwing. Although it is just an approximation, we have found this
sufficient for our anisotropic applications. As we will soon demon-
strate below, the approximated distance metric allows us to design
simple and clean anisotropic extensions for both dart throwing and
relaxation, which would have been much more complex if we had
to rely on a strict geodesic distance. While we have found Equa-
tion 1 more than adequate under most circumstances, one has to
keep in mind that this is only an approximation. We provide a
detailed justification and analysis in Section 4.3.

3 Anisotropic Sampling
Here we describe our anisotropic sampling algorithms: white noise,
dart throwing, and relaxation.

3.1 Anisotropic White Noise

A common component of our anisotropic blue noise sampling
methods is an anisotropic white noise generator. To our best knowl-
edge we are not aware of suitable prior methods. We take the fol-
lowing approach to generate each anisotropic white noise sample
s: (1) uniformly draw a random sample s′ from the domain Ω; (2)
compute its Jacobian J(s′) and the inverse J−1(s′); (3) draw a
small sphere with radius rδ centered on s′, and warp it into an el-
lipse via J(s′); (4) draw another random sample s uniformly from
the sphere centered at s′ with radius rmax, the maximum radius
of all J(p) ellipses for p ∈ Ω; and (5) if s is inside the J(s′) el-
lipse, warp it back to the original rδ sphere via J−1 and accept it;
otherwise, reject s and repeat the whole process.

The intuition behind our method is as follows. If we know how
the anisotropic domain Ω is warped from a uniform domain Ω′, we
could first generate uniform white noise on the latter and warp the
samples to the former (Figure 2). In reality, this knowledge is not
available for most anisotropic domains, so our method essentially
approximates this hypothetical process via local warps through the
Jacobian J . Specifically, each (uniformly random) s′ selects a local
domain (red sphere on the right), which, after warping through J ,
has the correct size and shape in the (hypothetical) uniform domain
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Figure 2: Anisotropic white noise. The blue/red sphere on the left/right
has radius rmax/rδ .

(red ellipse on the left). Thus, when rδ is sufficiently small so that
J is locally constant, our approach can draw s without bias. Also,
rmax does not need to be very accurate as long as it is large enough
to contain all J-transformed ellipses, even though a smaller/more-
accurate rmax will make the process more efficient. This is analo-
gous to the estimation of maximum density value in rejection-based
importance sampling.

3.2 Anisotropic Dart Throwing

Dart throwing [Cook 1986] is a classical algorithm for generating
isotropic blue noise samples. The output samples are generated
sequentially one by one. To determine the location of the next sam-
ple, a trial sample s is randomly drawn from the domain. If s is
at least a distance r away from all existing samples, it is accepted.
Otherwise, it is rejected. This process is repeated until a sufficient
number of output samples are produced, or a maximum number of
iterations is reached. To extend traditional isotropic dart throwing
for anisotropic sampling, we replace the Euclidean distance metric
with our geodesic one in Equation 1, which also incorporates the r
information as discussed in Section 2.
function S← AnisotropicDartThrowing(Ω, r, J,N,MT )

// Ω: sampling domain
// J: Jacobian field
// N : number of samples to be generated
// MT : maximum number of trials
define distance metric d from Ω and r // Section 2
S← ∅
trials← 0
while trials < MT and |S| < N

s← white noise sample drawn from Ω
// conflict checking
conflicted← false
forall s′ ∈ S

if d(s, s′) < 1 or d(s′, s) < 1
conflicted← true

endif
end
// if no conflict then accept this sample
if not conflicted

add s to S
trials← 0

else
trials← trials + 1

endif
end
return S

Program 1: Anisotropic dart throwing. See Equation 1 for the definition
of d. Notice that our new distance metric d absorbs the functionality of the
conflict metric r in classical formulation.

Conflict check metric. The centerpiece of our algorithm, as
summarized in Program 1, is the conflict check. Since our distance
metric (Equation 1) is not symmetric, namely d(s1, s2) 6= d(s2, s1)
in general, there are two potential ways to conduct the conflict
check, referred to as mean and max conflict metric [Wei 2008]. In
the mean conflict metric, we check whether the geometric shapes
of s1 and s2 intersect each other, while in the max conflict metric,

we check whether s1 or s2 is inside the “territory” of one another.
Note that when d is symmetric, the mean and max conflict met-
rics are equivalent, e.g., for uniform isotropic sampling. We chose
the max metric in our anisotropic sampling algorithm, because the
mean conflict metric requires solving a quartic polynomial for el-
lipse intersection, which might suffer from numerical instability
[Feng et al. 2008]. Also, the mean conflict metric cannot be easily
extended to higher dimensions. We have found the spectral quality
of the two metrics quite similar and chose the max metric due to its
superior quality/performance tradeoff.

3.3 Anisotropic Relaxation

Lloyd relaxation [Lloyd 1983] is another classical method that has
been applied to generating isotropic blue noise samples. Unlike dart
throwing which draws samples one by one, relaxation starts from
a given sample distribution and gradually improves its uniformity.
Let S be a set of samples (or “sites” in the jargon of [Balzer et al.
2009]) whose distribution we wish to optimize for. The uniformity
of S can be measured by the following energy function:

E(S,V) =
∑
i

∫
p∈Vi

ρ(p) |p− si|2 dp (2)

where V is the Voronoi tessellation generated from S, Vi the
Voronoi region corresponding to site si ∈ S, p a point in the do-
main Ω, and ρ a density function defined over Ω. Lloyd relaxation
minimizes this energy function by iterating between the following
two steps until meeting some termination criterion:

Voronoi generate the Voronoi tessellation V from the sample set S

Centroid move each site si ∈ S to the centroid mi of the corre-
sponding Voronoi region Vi ∈ V , i.e.,

mi =

(∫
Vi

ρ(p)dp

)−1 ∫
Vi

ρ(p)pdp . (3)

Lloyd relaxation can be implemented in either a discrete or a con-
tinuous sample domain Ω, where the former represents the sam-
ple space Ω via a collection of discrete points P , while the latter
is without such discretization. In this paper, we focus on the dis-
crete formulation, as it is conceptually simpler and easier to for-
mulate, especially for high dimensional Ω for which a continuous
method could be tricky to implement. A discrete formulation can
also achieve very similar quality to a continuous method via suffi-
cient point density. In a discrete setting, Lloyd relaxation performs
the Voronoi step by finding, for each discrete point p ∈ Ω, the site
s(p) that is the closest to p among all sites in S:

s(p) = arg min
s∈S

|p− s|2 . (4)

The Voronoi region V i for site si is then defined as the collection
of all points p whose site affiliation is si:

Vi =
⋃
{p ∈ Ω, s(p) = si} . (5)

Anisotropy. We can extend discrete Lloyd relaxation for
anisotropic sampling as follows. First, we use our geodesic distance
approximation (Equation 1) instead of the Euclidean one whenever
measuring distance between two points (e.g., during the Voronoi
step as in Equation 4). Second, following the discussion in [Feng
et al. 2008], we replace density ρ by Jacobian JTJ when comput-
ing the centroid:

mi =

(∫
Vi

JTJ(p)dp

)−1 ∫
Vi

JTJ(p)pdp . (6)



Note that since JTJ is positive definite, the first term is invertible.
Third, under the discrete formulation above, we generate the point
set P via our anisotropic white noise method, and pick the initial
site locations S by uniform random sampling from P .

Capacity constraint. Lloyd relaxation has the potential qual-
ity issue of settling into a semi-regular sample distribution, caus-
ing bias in the power spectrum. This problem has recently been
addressed by a technique termed capacity-constrained Voronoi tes-
sellation (CCVT) [Balzer et al. 2009]. CCVT modifies the Voronoi
step of classical Lloyd relaxation, by ensuring that the number of
points affiliated with each site remains unchanged throughout the
iterative process. Since CCVT is orthogonal to the anisotropic ex-
tension for Lloyd relaxation, they can be naturally combined. Fur-
thermore, since CCVT could be computationally slow, we also in-
corporate the accelerations in [Li et al. 2010].

4 Analysis
One of the standard methods to evaluate sample distribution qual-
ity is Fourier power spectrum (see, e.g., [Lagae and Dutré 2008]).
Specifically, given a set of N samples {pk}k=0 to N−1, its Fourier
spectrum F (f) can be computed as follows:

F (f) =
1

N

N−1∑
k=0

e−2πi(f .pk) (7)

where f is the frequency. For the purpose of analyzing sample pat-
terns, we are usually interested in the power spectrum/periodogram
P (f), which is essentially |F (f)|2, as well as its radial mean and
radial variance/anisotropy.

Unfortunately, the above formulation is suitable only to uniform
isotropic sampling, as its direct application over an adaptive and/or
anisotropic sample set might not produce very informative results.
Specifically, for anisotropic sample sets the power spectrum will ex-
hibit anisotropy as well, making it difficult to evaluate the true radial
anisotropy as in traditional power spectrum for uniform isotropic
sampling (see, e.g. Figure 13 in [Feng et al. 2008]). Consequently,
prior publications often completely skip rigorous evaluations or rely
on alternative metrics, such as the density and spatial uniformity.

In order to evaluate and compare different anisotropic sampling
algorithms via Fourier spectrum analysis just like in traditional
isotropic uniform sampling, we propose two alternative methods:
(1) uniform-isotropic reversible warping and (2) spherical harmon-
ics transform on uniform isotropic spherical sampling. Both meth-
ods evaluate anisotropic samples by Fourier analysis in an alterna-
tive isotropic domain, either on a plane (metric 1) or on a sphere
(metric 2). Thus, metric 1 facilitates the comparison of our tech-
nique against sampling methods on planes [Feng et al. 2008] while
metric 2 on manifold surfaces [Turk 1992; Alliez et al. 2002].

4.1 Uniform-isotropic reversible warping

Equation 7 can be modified for evaluating adaptive and/or
anisotropic samples over a plane by utilizing planar warpings
[Wolberg 1994] that are reversible to a uniform isotropic do-
main. Specifically, we draw samples from a warped domain that
is anisotropic and/or adaptive, and (un)warp the generated samples
to the uniform isotropic domain so that we can directly apply tradi-
tional spectrum analysis. Intuitively, drawing adaptive/anisotropic
samples in the warped domain has an equivalent mirrored process
in the uniform/isotropic domain for which distribution quality can
be analyzed rigorously. This basic concept is simple, and we have
found it very useful for analyzing spectrum property of anisotropic
samples. Details are as follows.

Let ϕ be a warp from a uniform domain (denoted via spatial vari-

able p) to a deformed domain (denoted with q):

q = ϕ(p)

Jq(q) = I

Jq(p) = Jq(ϕ
−1(q)) . (8)

For a set of samples {qk} generated from Jacobian field Jq(p),
we can evaluate their power spectrum in the uniform domain by
replacing pk with ϕ−1(qk) in Equation 7:

F (f) =
1

N

N−1∑
k=0

e−2πi(f .ϕ−1(qk)) . (9)

Unit square (A) (B) (C) (D)

Figure 3: Four basic warps from [Wolberg 1994]. (A) a scaling projection,
(B) a shear projection, (C) a perspective projection, and (D) a terrain relief.

Even though not all Jacobian fields have a reversible warp back to a
uniform isotropic domain, we can still find a repertoire of warpings
that are very useful for evaluation purposes.

Example. As a concrete example, let us consider a very simple
scaling transform from p = (x, y) to q = (u, v) (see Figure 3 (A)).

ϕ : (u, v) = (x/2, y)

where we have

Jq(ϕ
−1(q)) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=

(
2 0
0 1

)
.

Results. To verify our adaptive and/or anisotropic sampling
method and compare it with previous works, we apply the reversible
warping verification to results of ours and [Feng et al. 2008]. We
choose several different warps as shown in Figure 3 that have repre-
sentative characteristics: scaling, shearing, perspective projection,
and a more complex aggregate warp. The first 3 warps are chosen
because they represent basic warps with distinctive characteristics
from which more complex warps can be aggregated from [Wol-
berg 1994], while the last warp has more complex aggregate prop-
erties. We then derive Jacobian fields from these warps and gener-
ate samples accordingly (Figure 15). We verify the sample quality
by mapping the generated samples back to the uniform domain,
and computing the Fourier power spectrum and the corresponding
radial mean/variance analysis. As indicated in Figure 15, both our
anisotropic dart throwing and relaxation methods produce more sta-
ble results with good spatial and spectral quality. Meanwhile, as
indicated in Figure 4, the results by [Feng et al. 2008] may exhibit
bias due to the use of jittered grid in their initialization stage as well
as regular grid in their relaxation stage.

4.2 Sphere surface sampling

The warping method proposed in the previous subsection allows
us to perform Fourier analysis of anisotropic samples in a planar
uniform isotropic domain. Here, we follow a similar philosophy,
but via a slightly different uniform isotropic domain: a 2-sphere
(embedded in a 3D Euclidean space). We achieve this by a pla-
nar parameterization of the sphere, which by nature is anisotropic
(and thus analogous to warping). We perform planar anisotropic
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Figure 5: Sphere surface sampling and spectral analysis via spherical harmonics. The radial mean and anisotropy are obtained by averaging SH coefficients
of 10 runs with around 1800 samples each, except [Alliez et al. 2002], which is a deterministic algorithm so only 1 run is used. All results are generated
with the same sphere mesh data from [Praun and Hoppe 2003]. For [Turk 1992], 40 times of relaxation is used and for [Alliez et al. 2002], the resolution
of area-distortion map is 512 × 512. As shown, our sampling quality is much closer to the ground truth produced by direct dart throwing on the sphere. In
comparison, [Turk 1992] has a less smooth radial mean profile with excessive near-DC energy, and [Alliez et al. 2002] has high anisotropy.
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Figure 4: Spectral analysis of [Feng et al. 2008] with different combina-
tions of initial sample distribution (jittered grid vs. white noise) and sample
space discretization for relaxation (squared grid vs. adaptive Jacobian). We
use warp (B) in Figure 3 for clearest effects and use the same number of re-
laxation iterations. The original algorithm in [Feng et al. 2008] uses jittered
grid + square grid discretization (i.e., the upper-left case). As shown, jit-
tered grid initialization will produce more biased results than white noise;
this is not surprising, as similar effects can be observed for vanilla isotropic
dart throwing. Furthermore, square grid discretization also tends to produce
worse results than an adaptive discretization following the underlying Jaco-
bian field. This is because a square grid is not a uniform sampling in an
anisotropic domain, and thus may cause additional anisotropy.

sampling on the parameterization domain and evaluate the uniform
isotropic samples on the corresponding sphere surface.

However, here comes the question: since Fourier transform is for
2D planes, how are we going to apply Equation 7 to a sphere
surface? Fortunately, there is a natural correspondence of planar
Fourier transforms on spheres, which are spherical harmonics (SH)
[Groemer 1996], the most commonly used tool for signal analysis
on the 2-sphere [Roy 1976]. The basis functions of SH are the as-
sociated Legendre polynomials, defined over the range [−1, 1], as
shown in Equation 10:

Y m` (θ, ϕ) =

{√
(2`+ 1) (`−m)!

(`+m)!
Pm` (cos θ)eimϕ if m ≥ 0

(−1)mY
∗(−m)
` (θ, ϕ) if m < 0

(10)

where θ and ϕ are the spherical/polar coordinates; ` is the band
index of the frequency (the larger the ` the higher the frequency);
m, constrained in [−`, `], can be regarded as the rotation variable
within the same band and for different m on the same band, the
polynomials are orthogonal; Pm` is the Legendre polynomials, de-
fined as a recursive function on variables ` and m; and the super-
script ∗ denotes complex conjugation.

By replacing the basis function with the associated Legendre poly-
nomials in Equation 7, we can obtain the frequency function of the
sample distribution on the sphere surface:

[Alliez et al. 2002] Our method
Figure 6: The samples in parameter space. Here are the intermediate re-
sults of [Alliez et al. 2002] and our method for Figure 5.

SH(`,m) =
1

N

∫
Ω

Y m` (θ, ϕ)

N−1∑
k=0

δ(s− pk)ds

=
1

N

N−1∑
k=0

Y m` (pk) (11)

where Ω is the sampling space (the 2-sphere) and δ the Dirac delta
function. Different from Equation 7 where the frequency f are lat-
tice integer points, Equation 11 has different numbers ofms for dif-
ferent `, and thus does not result in a square-shaped power spectrum
image. Fortunately, we are still able to examine the sampling qual-
ity through the radial mean and anisotropy on different frequency
bands. Specifically, the radial mean for frequency ` is computed
as the average of {|SH(`,m)|2}m=−`:` and the radial anisotropy
as their variance.

Results. Figures 5 and 6 compare our method with previous
surface sampling algorithms [Turk 1992; Alliez et al. 2002]. As
shown, using the ground truth produced by direct dart throwing over
surfaces as reference, our approach outperforms alternative meth-
ods based on either relaxation [Turk 1992] or error diffusion [Alliez
et al. 2002]. In particular, for [Turk 1992], we have found it diffi-
cult to choose the proper number of iterations to achieve the right
balance between uniformity and randomness, as too few iterations
might produce insufficient uniformity (the cause of the near-DC en-
ergy) whereas too many iterations might produce a highly regular
(and thus biased) result. (In Figures 5, we have carefully chosen
the number of iterations to produce the best result for [Turk 1992].)
For [Alliez et al. 2002], as demonstrated in Figure 6, a more uni-
form sampling on the parameterization domain does not necessarily
translate to a better sampling on the sphere surface sample domain.

4.3 Approximation

Here, we provide a more detailed analysis for the approximate dis-
tance metric d in Equation 1 as well as the consequent elliptical
approximation of anisotropic samples. Borrowing our warping ver-



original warped (smoothly) warped

Figure 7: Why an anisotropic sample is not a little ellipse. The left is an
original uniform isotropic field, while the middle is a warped field [Wol-
berg 1994] upon which sampling becomes anisotropic. However, when the
distortion field varies smoothly enough, the warped shape can be well ap-
proximated by ellipse as shown on the right.
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Figure 8: Quality of approximate geodesic distance metric. Here we ap-
ply our anisotropic dart throwing and anisotropic relaxation algorithms to
the warping domain shown in the middle of Figure 7 and use reversible
warping verification to examine the spectral quality of output samples.
Note that when the sample number increases, the spectral quality of our
anisotropic sampling improves, which is due to Equation 1 approaching the
true geodesic distance.

ification method presented earlier, we can easily construct a sce-
nario showing that anisotropic samples are not little ellipses. As
shown in the left two images of Figure 7, suppose that we have an
original uniform isotropic sampling domain that is warped to an-
other domain. If we were to perform dart throwing on the warped
domain exactly, we would have to treat the samples with shapes
warped from the geometric disks from the original domain via strict
geodesic distance computation. Since this warping can be arbitrary,
so can the sample shapes in the output domain. Obviously, it is go-
ing to be computationally difficult to perform anisotropic sampling
using these complex and spatially varying geometric constructs, as
it would involve many geodesic distance computations.

Fortunately we have found the elliptical approximation to be more
than adequate and even exact under special circumstances. For ex-
ample, if we have a constant Jacobian field, then the amount of
anisotropy will not vary and the samples will be shaped as identical
ellipses, whose parameters are given by the singular values of the
Jacobian. In general, if the Jacobian field is smooth or the sampling
is sufficiently dense, then locally the size and orientation of our
samples will not vary significantly, and the approximation in Equa-
tion 1 suffices. Refer to Figure 7 right, where this assumption holds,
and Figure 7 middle, where this assumption is violated as well as
Figure 8, where we show the quality of sampling approaching the
ground truth when the sampling density increases.

4.4 Performance

We have measured the performance of our current implementation
in Tables 1 and 2. We would like to emphasize that we currently

implement our anisotropic dart throwing without any further per-
formance optimizations. We envision its speed would go up signif-
icantly by borrowing ideas from previous acceleration techniques
[Dunbar and Humphreys 2006; White et al. 2007; Wei 2008]. We
leave this as a potential future work.

dimension \ |S| 512 1024 2048 4096 8192 16384
2D 0.07 0.43 1.86 4.67 20.6 81.4
3D 0.14 0.81 2.448 8.92 30.0 142.7
4D 0.15 0.83 2.65 13.6 41.7 187.3

Table 1: Performance of anisotropic dart throwing with different dimen-
sions and number of samples |S|. All timings are in seconds, measured on
an HP xw4400 workstation with an Intel Core(TM)2 CPU 6400 at 2.13GHz
and 2GB Memory.

|P |
|S| \ |S| 1024 4096 16384 32768

64 0.83 6.4 78.5 910.3
256 2.6 23.4 284.3 3980.1
1024 8.7 125.5 1911.0 N/A

Table 2: Performance of anisotropic relaxation with different number of
samples |S| and number of points per sample |P ||S| . All timings (in seconds)
are measured on the same workstation as in Table 1. (See Section 3.3 for
the definition of S and P .)

5 Applications
Here, we present several applications of our technique, beyond
plain vanilla sampling that we have shown earlier in Section 4.
Depending on the particular application characteristics, either
anisotropic dart throwing or anisotropic relaxation could be more
suitable, as detailed in the individual applications.

5.1 Anisotropic stippling

Stippling is a technique to represent an image with small single-
color primitives (e.g., dots or sticks), and isotropic blue noise sam-
pling has been proved to be a potential method for reproducing the
image intensity without noticeable graininess or structural artifacts
[Secord 2002; Kopf et al. 2006; Ostromoukhov 2007; Balzer et al.
2009]. However, as shown in Figure 16, isotropic blue noise might
not properly reproduce anisotropic image features. Our method, by
explicitly considering anisotropy, can produce better results with a
similar number of samples.

Since spatial uniformity is more important than strict spectrum
quality for stippling applications, here we choose anisotropic re-
laxation over anisotropic dart throwing as the generation algorithm.
Given an input gray-scale image I , we first compute the Jacobian
field J by treating I as a surface M with an intrinsic parameteri-
zation, M(x, y) = (x, y, I(x, y)), with the intensity I(x, y) rep-
resenting the third coordinate. After that, a Jacobian field J can
be easily computed as the parameterization Jacobian of the surface
M to the 2D domain of I . J is further scaled by the distance field
D derived from I (see [Wei 2008]) to reflect the local image den-
sity. We then feed J into our anisotropic relaxation algorithm for
distributing the stipples. To depict anisotropy, we use sticks as the
rendering primitive as they have shown to be capable of revealing
image gradients and thus more faithfully reproduce local features
than dots [Hiller et al. 2003; Fritzsche et al. 2005]. (We have not
found it necessary to use more complex primitives like ellipses or
curved strokes due to the high sample density of typical stippling
applications.) The directions of the sticks are orthogonal to the prin-
cipal axis of the local J and their lengths are inversely proportional
to the local D.

Figure 16 shows anisotropic stippling performs better than al-
ternative methods such as isotropic stippling [Balzer 2009] and
structure-aware half-toning [Pang et al. 2008]. We would like



to note that both anisotropic primitives and anisotropic distribu-
tions contribute to the effectiveness of our approach, as isotropic
primitives over anisotropic distributions fall short in depicting
anisotropic structures, while anisotropic primitives over isotropic
distributions produce less uniform (and thus noisier) results (see
our supplementary materials).

87 samples 246 samples 236 samples

118 samples 282 samples 274 samples

LIC
isotropic (a)

∼ sample spacing
isotropic (b)
∼ sample count

anisotropic

Figure 9: Vector field visualization via blue noise sampling. The input
vector field (left-most column) is visualized via LIC [Cabral and Leedom
1993]. We produce two sets of isotropic sampling results, isotropic (a) (sec-
ond column) with similar spacing parameter and another isotropic (b) (third
column) with similar sample count to our method (right-most column). For
the glyph rendering, we bend the glyph arrows to align with the underlying
flow. Compared to isotropic blue noise sampling in (a, b), our method can
pack the glyphs anisotropically, allowing more desirable inter-glyph spacing
in directions both parallel and orthogonal to the underlying flows.

5.2 Vector field visualization

Another potential application for blue noise sampling is to place
glyphs for vector field visualization. Compared to other types of
vector field visualization, a uniform and random distribution of
glyphs [Turk and Banks 1996] could maximize the visual quality
(such as the description of critical points) while clearly presenting
the direction of vector flows [Laidlaw et al. 2005]. Such uniform
and random distributions are exactly in line with the property of
blue noise sampling. Since glyphs often take elongated, anisotropic
shapes such as long arrows, simply using isotropic blue noise sam-
pling would not be effective because it would result in having too
much/little spacing in the direction orthogonal/parallel to the flows,
as shown in Figure 9.

Our anisotropic blue noise sampling method, in contrast, can natu-
rally be applied to place such anisotropic glyphs, producing better
visualization than isotropic blue noise sampling. For this applica-
tion, we opt for our anisotropic dart throwing over relaxation to
ensure that the glyphs never intersect each other. To apply our
method, we derive the Jacobian from the input vector field so that
the corresponding ellipse at each location will have its major axis
aligned and scaled in proportional to the underlying flow vector,
while having its minor axis lined up with the orthogonal direction
according to a user specified constant width. Therefore, such
an anisotropic packing can better balance the inter-glyph spacing
in the directions parallel and orthogonal to the flows. Compared to
prior vector field visualization algorithms such as [Turk and Banks
1996], the main advantage of our approach is its simplicity; in a
sense, the random descent solver in [Turk and Banks 1996] already
hints on an anisotropic blue noise distribution, but it could be po-
tentially more complex and slower than our approach. However, we
wish to point out that our method is suitable only for placing short
segment glyphs; for longer and more global contours such as those

Warp back from Ω to MThrow anisotropic darts in Ω

M

Ω

Input

Figure 10: Surface sampling via anisotropic dart throwing.

shown in the latter half of [Turk and Banks 1996], a more special-
ized (and possibly more complex) algorithm might still be required
to produce the best effects.

5.3 Sampling manifold surfaces

Distributing samples uniformly on a manifold surface has long been
a challenging and well studied problem, e.g., [Turk 1992; Fu and
Zhou 2008]. However, most of these methods perform sampling
directly on surfaces; this might require geodesics and other sur-
face related data structures, which are usually nontrivial to compute
and implement. Some other approaches draw samples on the 2D
parameter domain and thus avoid implementing surface geodesics
[Alliez et al. 2002], but as we have shown in Section 4.2, these ap-
proaches might suffer from quality issues. Our goal is to present a
method that combines the benefits of both methodologies: on one
hand, we would like to perform sampling directly on a 2D parame-
ter domain in order to avoid the complex implementation of surface
geodesics and data structures, and on the other hand, we would
like our sampling results to exhibit excellent blue noise spectrums.
We can achieve this goal by performing our anisotropic blue noise
sampling algorithm directly in the 2D parameter space instead of
the input surfaces. In essence, we avoid the direct computation of
surface geodesics by converting the problem of isotropic surface
sampling into anisotropic planar sampling.

For this application, we opt for anisotropic dart throwing over relax-
ation since the former can be more easily adapted for different sit-
uations, e.g., multi-chart parameterization. Surface sampling also
does not seem to require exact sample count specification, and even
though in theory relaxation will produce spatially more uniform
samples than dart throwing, we have not found significant differ-
ences in the surface setting.

Figure 10 shows the procedure of our surface sampling approach.
On the first step, given a parameterized surface M , we compute the
Jacobian J of the parameterization f : Ω→M . A nice property of
our algorithm is that it generalizes to any existing surface parame-
terization. For the specific case of triangle meshes, we can choose
from one of several suitable existing methods. For surface sampling
application the Jacobian has to take into account not only surface
geometry but also the sample spacing requirement (see Section 2).
To achieve this, we scale the J computed above (from parameteri-
zation only) to account for the desired minimum distance between
two samples on the surface. The minimum distance is computed
with the required number of samples N on M , with upper bound
given by

rmax = 2

√
S

2
√

3N
(12)

where S is the area of the surface M [Li et al. 2008]. In practice,
r = ρrmax, where ρ is a scalar over [0, 1] [Lagae and Dutré 2006].
In our case, we let ρ be 0.75. We multiply J by 1

ρrmax
to ob-

tain the input Jacobian field for our algorithm. Then, the algorithm
is carried out to produce anisotropic samples in the 2D parameter
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Figure 12: Comparison of adaptive isotropic sampling and our anisotropic
sampling to generate isotropic samples over a mesh surface. The parame-
terization used is mostly effective at preserving angles [Desbrun et al. 2002],
thus achieving a nearly isotropic mapping.

space, which are finally warped back to the 3D surface space using
barycentric coordinates to form the uniform isotropic samples.

We present results for two meshes using the parameterization met-
ric from [Desbrun et al. 2002] in Figure 11 . Note that both meshes
are hard to parameterize with low stretch, yet our algorithm still
produces satisfactory results. Figure 12 demonstrates that, even
when using such a parameterization that gives importance to an-
gle preservation, the use of anisotropic sampling produces superior
results over adaptive isotropic sampling.

By altering the input Jacobian field to our algorithm, we can also
perform other kinds of samplings. For example, we can multiply
it with an importance field (e.g., mean curvatures) in order to per-
form adaptive isotropic surface sampling, as shown in Figure 13.
We could also produce an anisotropic surface sampling by gener-
ating a Jacobian that combines the parameterization Jacobian with
a user specified tensor field defined on the surface. Such capabil-
ity allows us to distribute anisotropic texture patterns on surfaces,
whereas prior methods (see [Lagae and Dutré 2005]) use isotropic
blue noise and thus are applicable only for isotropic texture pat-
terns. As shown in Figure 14, our method is able to produce uni-
form placement for both isotropic and anisotropic texture patterns,
whereas prior isotropic methods might not work well for the latter.
None of these applications require any changes to our anisotropic
sampling machinery.

6 Limitations and Future Work
We currently place anisotropic samples subject to a given Jacobian
field without additional constraints, such as mesh features [Vorsatz
et al. 2001] and image contours [Kim et al. 2008]. One potential
future work is to impose additional constraints to our current algo-
rithms, so that the sample placements satisfy not only anisotropic
blue noise properties but also specific application needs.

Even though we have shown that ellipses can be a reasonable ap-
proximation to true anisotropic samples under many circumstances,
we have also shown that this is really only an approximation. One
interesting future work is to investigate more advanced metaphors
to perform a more accurate approximation, as well as strategies to
gracefully fall back to such more accurate measures when our ap-
proximation is detected to be inadequate.

The main purpose of our proposed analysis methods is to compare

(a) iso dist + iso prim (b) iso dist + aniso prim

(c) iso dist + aniso prim (d) aniso dist + aniso prim

Figure 14: Texture distribution on surfaces. Here we show
a variety of combinations of isotropic/anisotropic distributions with
isotropic/anisotropic texture primitives. Case (a) is the traditional iso/iso
combination. Case (d) is our aniso/aniso result. Both case (b) and (c) have
a iso/aniso combination, with (b) having the same spacing parameter while
(c) the same sample count to (d). As shown, anisotropic distribution (d) pro-
vides better quality than isotropic distribution (b) (c) for anisotropic primi-
tives. (Notice that both (b) (c) are either too sparse or too dense in certain
directions of the distributions.) Cases (a) (c) (d) have 500 samples while
case (b) has 350 samples.

against different anisotropic sampling methods, and we have shown
that both warping and sphere surface analysis are capable of detect-
ing issues in prior methods. However, we would like to point out
that our analysis methods are for evaluating anisotropic sampling
methods, not the generated anisotropic sample distributions. One
potential future work is to devise a more general methodology to
perform Fourier spectrum analysis, e.g., for sample sets distributed
over general surfaces [Bowers et al. 2010].
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Figure 15: Verification via warping. Except for the ground truth produced
by dart throwing (1st row) and relaxation [Balzer et al. 2009] (2nd row),
each method (marked vertically on the left) is associated with 4 different
warpings as in Figure 3. From left to right: original/anisotropic samples,
warped/isotropic samples, power spectrum averaged over 10 runs, and the
corresponding radial mean and anisotropy plots. Each case contains∼3800
samples. Notice the obvious anisotropic bias exhibited by [Feng et al. 2008].



original structure-aware halftoning [Pang et al. 2008]

isotropic stippling [Balzer et al. 2009] anisotropic stippling [our method]

Figure 16: Anisotropic stippling. Here we compare results generated by structure-aware halftoning [Pang et al. 2008], isotropic stippling [Balzer et al. 2009],
and our anisotropic method. The top 2 bitmap images have resolution 508 × 603, while the bottom 2 stippling results contain 30,000 samples. Compared to
(discrete) halftoning, (continuous) stippling provide a more natural and organic effect. Compared to isotropic stippling, our method depicts anisotropic features
better, such as the hair, the strokes, and the region contours. Note: to minimize the quality differences caused by the bitmap and vector graphics renderers, we
have rasterized the two stippling images into PNG format with the same resolution of the two bitmap images. The vector graphics versions of stippling images
are shown in the supplementary materials.


