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Abstract

The ability to place surface samples with Poisson disk distribution
can benefit a variety of graphics applications. Such a distribution
satisfies the blue noise property, i.e. lack of low frequency noise and
structural bias in the Fourier power spectrum. While many tech-
niques are available for sampling the plane, challenges remain for
sampling arbitrary surfaces. In this paper, we present new meth-
ods for Poisson disk sampling with spectrum analysis on arbitrary
manifold surfaces. Our first contribution is a parallel dart throwing
algorithm that generates high-quality surface samples at interactive
rates. It is flexible and can be extended to adaptive sampling given a
user-specified radius field. Our second contribution is a new method
for analyzing the spectral quality of surface samples. Using the
spectral mesh basis derived from the discrete mesh Laplacian oper-
ator, we extend standard concepts in power spectrum analysis such
as radial means and anisotropy to arbitrary manifold surfaces. This
provides a way to directly evaluate the spectral distribution quality
of surface samples without requiring mesh parameterization. Fi-
nally, we implement our Poisson disk sampling algorithm on the
GPU, and demonstrate practical applications involving interactive
sampling and texturing on arbitrary surfaces.

Keywords: Poisson disk sampling, manifold surface, parallel
computation, mesh Laplacian, spectrum analysis, GPU

1 Introduction

Surface sampling can benefit a variety of graphics applications,
such as texturing [Turk 2001; Wei and Levoy 2001; Lagae and
Dutré 2005], remeshing [Turk 1992; Alliez et al. 2002; Qu and
Meyer 2006], subsurface scattering [Jensen and Buhler 2002],
global illumination [Cheslack-Postava et al. 2008; Ritschel et al.
2009], non-photorealistic rendering [Meier 1996], and point-based
rendering [Grossman and Dally 1998]. These applications often de-
sire surface samples with a uniform and random distribution. Such
a distribution satisfies the blue noise property, i.e. lack of low fre-
quency noise and structural bias in the Fourier power spectrum.

A rich literature of work exists for generating blue noise distri-
butions on the plane. However, it remains difficult to efficiently
sample arbitrary non-planar surfaces. Several existing algorithms
distribute surface samples using point repulsion [Turk 1992], strati-
fied sampling [Nehab and Shilane 2004], dart throwing [Cline et al.
2009], or pre-computed data sets [Ostromoukhov 2007; Li et al.
2008]. Many of these techniques are either computationally expen-
sive or require surface parameterization, and hence are not suitable
for applications involving real-time dynamic or deformable objects
with potentially complex shapes.

Figure 1: A ray traced image showing Poisson disk samples computed us-
ing our algorithm on the dragon model. Our algorithm performs at 180,000
sample points per second on complex models.

With respect to spectrum analysis, the standard Fourier transform
has been successfully applied in examining the spectral quality of
the sample distribution [Lagae and Dutré 2008]. These methods,
however, are only available for planar sampling, and are not yet
applicable to sample distributions on arbitrary mesh surfaces.

In this paper we present new methods for Poisson disk sampling
with spectrum analysis on surfaces. Our first contribution is a par-
allel dart throwing algorithm for efficient Poisson disk sampling on
arbitrary manifold surfaces. Dart throwing [Cook 1986] is a clas-
sical method for generating Poisson disk distributions, in which
the samples are randomly located but remain at least a minimum
distance r away from each other. Although it is only one way of
blue noise sampling, it exhibits excellent distribution quality and
is simple and amenable for acceleration. For planar sampling, ef-
ficient dart throwing can be achieved using a repertoire of accel-
eration [Jones 2006; Dunbar and Humphreys 2006; White et al.
2007] and parallelization [Wei 2008] techniques. For surface sam-
pling, Cline et al. [2009] introduces an optimized dart throwing al-
gorithm, but it requires sequential computation. We present the first
data-parallel algorithm for Poisson disk sampling on surfaces. Our
main idea is to sample the surface into a dense point cloud, and
then draw Poisson disk samples from within the set. For this we
extend the parallel grid cell sampling approach in [Wei 2008] from
Euclidean to geodesic distance metric; since the latter cannot be
smaller than the former, we can draw samples directly on surfaces
without any parameterization. To account for geodesic distance, we
propose a fast approximation that is easy to compute and accurate
for close-by sample points.

Our second contribution is a new method for analyzing the spectral
distribution quality of surface samples. In planar sampling, the dis-
tribution quality is typically measured in terms of the radial means
and anisotropy of the Fourier power spectrum [Lagae and Dutré
2008]. We extend these concepts to arbitrary manifold surfaces by
employing spectral mesh basis functions, derived as the eigenfunc-
tions of the discrete mesh Laplacian operator [Levy 2006]. These
functions define a Fourier-style basis set that exists on the mesh
surface, and hence can be used to evaluate the power spectrum of
samples distributed over the mesh. We show that regardless of the
surface shape and topology, the ideal radial means and anisotropy of
the power spectrum are consistent with well-known results obtained
in planar sampling. Because the spectral mesh basis obeys surface
geodesic distance and does not require any mesh parametrization,
it provides a convenient way to study and compare the quality of
different surface sampling algorithms.

Finally, we present an implementation of our sampling algorithm



on modern GPUs. Our implementation achieves 180,000 samples
computed per second using approximated geodesic distance. This
is close to an order of magnitude faster than the state of the art
in [Cline et al. 2009]. Since we represent the surface as a large
point cloud, our algorithm is flexible with respect to different sur-
face representations, and its speed is insensitive to the mesh com-
plexity. Therefore our algorithm is suitable for applications involv-
ing dynamically changing or deformable geometry.

2 Background

Blue noise sampling. A blue noise distribution refers to a sam-
ple set that has a uniform and unbiased distribution in the spatial
domain as well as absence of low frequency noise and structured
bias in the frequency domain. Due to its desirable spatial and spec-
tral properties, blue noise sampling has been widely employed and
received significant research attention [Lloyd 1982; Cook 1986;
Mitchell 1987; McCool and Fiume 1992; Ostromoukhov et al.
2004; Jones 2006; Dunbar and Humphreys 2006; Kopf et al. 2006;
Ostromoukhov 2007; White et al. 2007; Wei 2008; Fu and Zhou
2008; Balzer et al. 2009; Cline et al. 2009].

Surface sampling. Among the numerous techniques for blue
noise sampling, we are particularly interested in surface sampling,
which can benefit a variety of graphics applications in texturing,
rendering, remeshing, and point-based graphics. However, many
existing methods are either slow or rely on pre-computed data sets
(e.g. point hierarchy [Pastor et al. 2003], parameterization [Al-
liez et al. 2002], or dual parameterization [Li et al. 2008]) and
are thus unsuitable for applications that require fast computation on
dynamic/deformable geometry. To overcome these limitations, we
aim to provide a surface sampling method that is both parallel (and
thus can run fast on parallel processors such as the GPU), and also
capable of computing samples on the fly on arbitrary surfaces with-
out parametrization. Our method draws inspirations mainly from
the following prior work: [Nehab and Shilane 2004] for the use of
voxel grid to store samples, [Wei 2008] for parallel dart throwing,
and [Fu and Zhou 2008; Cline et al. 2009] for surface sampling
under geodesic distance metric.

Quality analysis. As discussed in [Ulichney 1987] and [Lagae
and Dutré 2008], there are two primary methods for measuring the
quality of blue noise sample distribution on Euclidean planes: one
is spatial uniformity via the relative radius, and the other is Fourier
spectrum analysis. Given a set of N samples {pk}k=0 to N−1, its
Fourier spectrum F (f) (f being the frequency) can be computed
using the standard Fourier transform. Then, three quantities can be
derived: the power spectrum/periodogram |F (f)|2, and the corre-
sponding radial mean and anisotropy. A sample set that satisfies the
blue noise criteria must exhibit lack of low frequency noise in the
radial mean and absence of any structural bias (i.e. a low and flat
anisotropy). While the spatial uniformity can be easily extended to
Riemannian surfaces, the power spectrum is non-trivial to extend
because ordinary Fourier basis does not apply to Riemannian sur-
faces. Li et al. [2010] extended Fourier power spectrum analysis to
sphere surfaces via spherical harmonics. We provide a further ex-
tension to arbitrary manifold surfaces using the spectral mesh basis.

Mesh Laplacian and spectral basis. The spectral mesh ba-
sis [Karni and Gotsman 2000; Levy 2006], derived from the dis-
crete mesh Laplacian, provides a set of Fourier-style basis func-
tions for manifold surfaces. As such, classical Fourier analysis
can be easily extended to functions defined over the surface of a
mesh. Due to its flexibility and generality, the spectral mesh ba-
sis has found many applications in computer graphics. These ap-
plications include mesh compression [Karni and Gotsman 2000],
remeshing [Dong et al. 2006], morphing [Alexa 2002], and wa-
termarking [Praun et al. 1999]. Our work is the first to show the

application of the spectral basis on analyzing surface sample distri-
butions. By using the spectral basis, we found that the ideal radial
means and anisotropy for general surface sampling are consistent
with familiar examples in planar sampling.

There are several practical issues for efficiently computing such a
basis, including the cost of solving a large matrix eigenvalue prob-
lem, and the associated numerical stability problems. [Karni and
Gotsman 2000] reduced the cost of constructing the basis by subdi-
viding a large input mesh into smaller partitions, thus deriving basis
functions for each partition individually. [Vallet and Lévy 2008] in-
troduced a spectral shift method that is suitable for computing a
large number of basis functions at significantly reduced cost. [Dyer
et al. 2007] investigated the spectral robustness of different mesh
Laplacians with respect to the mesh connectivity and tessellation.

3 Parallel Uniform Sampling on Surfaces

Given a surfaceM, Poisson disk sampling computes a set of sam-
ples S that are randomly distributed on the surface but remain a
minimum distance of r away from each other. Mathematically, this
means d (si, sj) ≥ r, ∀ si, sj ∈ S, where d is a given distance
metric. Brute force dart throwing generates such a sample set by
repeatedly drawing a random point on the surface, checking the
point’s distance to existing samples, and accepting it if no viola-
tion is found. Due to its high computation cost, brute force dart
throwing is only feasible for generating a small set of samples.

We propose a parallel dart throwing algorithm for efficient Poisson
disk sampling on surfaces. In this section we describe our algorithm
for uniform surface sampling, where the radius r is uniform every-
where on the surface. We start with Euclidean distance, then extend
it to geodesic distance using a fast approximation. For simplicity
we only consider triangle mesh surfaces, but other surface types can
be easily incorporated. We do not require mesh parametrization.

Our algorithm builds upon [Wei 2008], which performs parallel dart
throwing in a continuous n-dimensional Euclidean space. Using
3D as an example: their algorithm starts by partitioning the domain
(unit cube) into grid cells (voxel) of size r√
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, thus the diagonal of

each cell is r. Given the minimum distance requirement, each cell
can contain at most one Poisson disk sample. For each cell, the
algorithm makes up to k trials to draw a random point that satis-
fies the minimum distance requirement with existing samples in the
neighboring cells. If all k trials are rejected, the cell is left empty.
To achieve parallelism, they organize cells into subsets called phase
groups. All cells in a phase group are separated by at least a dis-
tance of r from each other, thus can be processed in parallel without
causing conflicts. They process each group sequentially, and use a
random ordering of the groups to reduce bias.

3.1 Sampling with Euclidean Distance

Sample space. To perform sampling on surfaces, assuming Eu-
clidean distance, we can use the same grid cell structure as above.
However, we must make sure that the random points at each cell
are drawn on the mesh surface. One possible solution is to main-
tain a list of triangles that potentially overlap with each cell, then
generate trial points by uniformly sampling the triangles. However,
as the triangles are often bigger than the cell size, many generated
trial points will be outside the cell and hence be discarded.

Our solution is to compute a large set of initial random points Si by
uniformly sampling the entire surface, then partition these points to
grid cells, and finally draw Poisson disk samples from the points
contained in each cell. Thus we have S ⊂ Si. Essentially this
means our sample space is a dense set of points that discretely rep-
resents the surface. As long as Si is sufficiently large and its dis-
tribution is uniform with respect to surface area, no additional bias
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Figure 2: (a) shows that our Poisson disk samples (red) are drawn from
the discrete random points assigned to each cell; (b) shows a 2D example
of 3×3 phase groups with random ordering.

will be introduced in the subsequent Poisson disk sampling process.

To generate Si for a triangle mesh, we use a standard algorithm
that repeatedly selects a triangle with probability proportional to
its area, and then uniformly sample the selected triangle using
barycentric coordinates computed as u = 1 −

√
ξ1, v = ξ2

√
ξ1.

Here ξ1, ξ2 ∈ [0, 1] are two uniform random numbers. This step
can be easily parallelized since each point is independently com-
puted. We store each point’s position, triangle id, and barycentric
coordinates in a single 1D array. We could also apply stratified
sampling, which budgets a certain number of samples per group of
triangles, based on the total surface area. This distributes samples
more uniformly, which benefits the Poisson disk sampling step. For
simplicity we currently do not apply stratified sampling.

Once Si is generated, the triangle mesh is no longer needed. Thus
our algorithm is flexible w.r.t. different surface types: all we need is
a generator that provides uniform random (i.e. white noise) samples
on the surface.

Grid partition. Our next step is to partition the points Si into grid
cells. To do so, we build a 3D grid around the bounding box of Si,
using r√

3
as the grid cell size. For each point in Si, we compute

which cell it belongs to, and assign it the cell id. We then use a
parallel global sorting to sort the points according to their cell ids,
so that those belonging to the same cell are stored together in the
resulting array. Note that since the points are initially randomly
generated on the surface, after sorting their spatial positions remain
in random order within each cell.

A cell is valid (non-empty) if there is at least one point assigned to
it; otherwise it is invalid (empty). For each valid cell, we keep track
of its starting point in the sorted Si array, so that we can access
the list of random points assigned to it. Note that because a mesh
surface has 2D topology, only a small percentage of the cells are
valid. Invalid cells do not contain any actual point and hence are
never generated, stored, or processed. For efficient access to the
sparse valid cells, we use a hash table described later.

Parallel sampling by phase groups. Once the grid partitioning
is completed, we can then perform sampling in each cell. As de-
scribed in [Wei 2008], the key to enabling parallel sampling is to
allow multiple cells, organized as phase groups, to be sampled con-
currently. Each phase group contains a set of regularly spaced cells
that are sufficiently far apart and thus will not cause conflicts when
processed in parallel. Figure 2(b) shows an example of the phase
groups. Cells with the same color belong to the same phase group.
Again, only valid cells of each phase group will be processed.

To create the phase groups, we simply sort all valid cells by their
phase group ID. A random ordering of groups is used to reduce
sampling bias. It can be shown in 3D space, the minimum number
of phase groups is 3×3×3. Increasing the number of phase groups
will help reduce sampling bias, but it also reduces the number of
cells per phase group, thus decreasing parallelism.

function hashtable← ParallelUniformSurfaceSampling(Si, r, k)
// Si: a dense set of random points sampled on the surface
// k: maximum number of trials per grid cell
// n: sample space dimensionality
µ← r√

n
// cell size

box← BoundingBox(Si)
grid← d box.max−box.min

µ
en

parallel CalculateCellId(Si, box, µ)
parallel SortPointCloudByCellId(Si)
parallel hashtable← InitializeHashtable(Si)
{p} ← parallel CalculatePhaseGroupID(Si)
{p} ← parallel SortPhaseGroupID({p})
foreach trial t from 1 to k

foreach phase group p ∈ {p}
parallel foreach cell id c ∈ p
cell← hashtable.search(c)
if Si[cell.first index+ t].cellid 6= cell.id

break // no more random points for the cell
s←Si[cell.first index+ t]
conflict← false
foreach neighboring cell id cj

if cellj ← hashtable.search(cj) is not null
if distance(s, cellj .sample) < r
conflict←true
break

if conflict == false
cell.sample← s

parallel end
end

end

Program 1: Pseudo-code for parallel uniform surface sampling under
Euclidean distance. Extension for geodesic distance is in Section 3.2.

In contrast to sampling in continuous space, we will draw sam-
ples from the discrete set of random points assigned to each cell,
as shown in Figure 2(a). Program 1 lists our sampling algorithm,
which is similar to [Wei 2008]. For each valid cell in a phase group,
we select a trial sample from its list of random points, and check
its conflicts with existing samples in the neighboring cells. If no
conflict is found, the point is stored as a successful sample. The
algorithm then proceeds to the next phase group. As in [Wei 2008],
we perform the k loop outside the phase groups. Note, however,
we do not perform multi-resolution sampling as suggested in their
work. There are two reasons. One is computation efficiency: multi-
resolution sampling would require re-assigning the initial random
points Si to grid cells at each different resolution level, which can
cause significant slowdown. The other reason is that in practice,
applying the k loops outside the phase groups is already quite ef-
fective at eliminating the bias caused by a fixed grid resolution.

Storing cells using hash table. Since valid cells are sparse, we
use a hash table to store them and their associated Poisson disk
samples. We use the global cell id as a hash key, and a modulo
operator as the hash function: hash idx = key % hash table size.
Our hash table size is 3∼4 times the total number of valid cells. To
handle hash collision, we allocate Nb = 5 buckets for each hash
entry. Cells mapped to the same entry are stored sequentially in the
buckets. Figure 3 shows a diagram of the hash table. Each bucket
stores the cell id, a pointer to the beginning of the random point list
assigned to the cell, and a Poisson disk sample if it has any. Due to
sparsity, the total amount of storage for the entire hash table is rea-
sonable (∼50 MB) even for a high resolution grid. While we could
use a more sophisticated parallel hashing algorithm such as [Alcan-
tara et al. 2009], our simple hash table is easy to implement and
works well in practice.

The hash table is created after the initial random points Si are sorted
into grid cells. To do so, for every point in parallel, we check its
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Figure 3: Our hash table that stores the samples for valid cells.

cell id against its previous point. If the two ids are different, the
current point must be the beginning point of a valid cell, therefore
we write its cell id into a bucket at the corresponding hash entry.
Each hash entry has an index that keeps track of the next available
bucket. We use atomic instructions to update the index, ensuring
that concurrent writes to the same hash entry are serialized.

When the number of cells mapped to the same hash entry exceeds
the number of buckets, we have an overflow situation. Although
our hash table is not guaranteed to be overflow-free, in practice we
almost never encounter such a situation. Alternatively we could
use a standard open addressing scheme such as quadratic probing
or double hashing to strictly eliminate overflow, but we found our
bucket-based method preserves memory coherence better.

In order to search a cell in the hash table, we find its entry in the
table using the cell id, and then linearly scan through the buckets to
find a matching id. If no match is found, the cell must be invalid.
Otherwise the search returns as soon as a matching id is found.
Since each cell can contain at most one Poisson disk sample, there
can only be one bucket with the matching id.

3.2 Sampling with Geodesic Distance

For complex shapes with thin features, sampling with the Euclidean
distance metric can lead to undesirable distribution. This is because
it measures the shortest distance in 3D space as opposed to the sur-
face. In this case, we need to account for geodesic distance, for
which we make the following changes to our algorithm.

Geodesic distance approximation. The first change is to re-
place the distance function d with an approximation that quickly
estimates the geodesic distance between two surface points. While
techniques are available for computing accurate geodesic dis-
tance [Sethian 1995; Surazhsky et al. 2005], they are often expen-
sive to compute and difficult to parallelize on millions of points.
Since we represent the surface as a large point cloud, we ideally
want a simple approximation that only relies on the points and not
on the mesh connectivity or parametrization.

Assume two surface points p1, p2 with normals ~n1, ~n2, respec-
tively. The Euclidean distance between the two points is de =
‖p2 − p1‖, and the normalized vector connecting the two points
is ~v = (p2 − p1)/de. We compute c1 = ~n1 · ~v and c2 = ~n2 · ~v,
which are the cosine angles of the two normals with the direction ~v.

We assume that there is a smooth curve on the surface that passes
through the two points, and we estimate the geodesic distance dg as
the length of this curve. However, explicitly constructing this curve
would be non-trivial, since ~n1, ~n2, and ~v may not be co-planar.
Instead, we use a direct integral to estimate dg . Specifically, we take
differential steps along ~v. At each step t, we estimate the cosine
angle c(t) between the curve normal at this point and direction ~v
as: c(t) = (1− t) c1 + t c2, which is simply a linear interpolation
between c1 and c2. Using c(t) we can estimate the differential curve
length that is along the tangent direction (see Fig. 4). Finally we

c1 c2

t t+dt

n1 n2

v

Figure 4: Geodesic distance approximation. The blue line indicates the
differential curve length at integration step t.

integrate the differential curve length and obtain dg as:

dg =

∫ 1

0

de√
1− [(1− t) c1 + t c2]2

dt =
arcsin c1 − arcsin c1

c1 − c2
de

(1)
Note that the integral has an analytic solution, and it is a simple
scaling of the Euclidean distance de. Also note that if c1 = c2, the
formula reduces to de√

1−c21
using L’Hospital’s rule.

When p1, p2 are sampled on a plane, we can easily see that our
formula gives dg = de. Moreover, it can be shown that when p1
and p2 are two points sampled on a sphere, our estimated dg gives
the exact geodesic distance: dg = 2R arcsin de

2R
. Therefore the

formula is correct for these two special cases.

The main advantage of this approximation is that it is fast to com-
pute and can easily fit into existing algorithms. On the other hand,
since it completely ignores the underlying mesh, it is only accurate
when the surface changes smoothly between p1 and p2. Note, how-
ever, we only need to compute the geodesic distance when de < r,
because if de ≥ r the two points cannot possibly have a conflict as
dg ≥ de. Usually we are only interested in cases where r is small,
thus the two points must be quite close-by spatially, and our sur-
faces typically do not contain high-frequency changes at this scale
level. Therefore in practice we found our approximation to work
well in many cases. In Section 5 we discuss the error of this ap-
proximation by comparing it to ground truth geodesic distances.

Number of samples per cell. In the Euclidean setting, we can
safely assume that each grid cell contains at most one sample. How-
ever, this is no longer true for the geodesic setting, as two points in
a cell can have dg > r. We handle this case by explicitly allow-
ing the same cell to appear multiple times in the hash table, so that
each cell instance can store a different sample. This increases the
expected searching time as we must scan through all the available
buckets at a hash entry to find all matching cells. But we found this
additional overhead to be relatively small. In practice, we rarely ob-
serve any cell that contains more than 2-3 samples, especially when
generating a large number of samples using a small radius. There-
fore we provide an option for the user to enable or disable multiple
samples per cell at run-time, to achieve a better tradeoff between
quality and performance.

Number of trials. When allowing for multiple samples per cell,
we also need to increase the number of trials k in order to increase
the likelihood of finding the additional samples. Ideally k should
be proportional to the surface area contained in the cell. In practice
this can be easily estimated using the number of random points as-
signed to each cell, because the initial random points Si are drawn
uniformly from the surface. Again, when generating a large number
of samples, we found the effect of varying k per cell to be insignif-
icant in most cases. Therefore our implementation leaves this as an
option for the user to adjust at run-time.

Implementation. We implement our parallel surface sampling
algorithms on the GPU using NVIDIA’s CUDA programming lan-
guage. The main steps are listed in Program 1. We make use of
several parallel computation primitives such as global sorting and
list compaction, all of which are available in the CUDPP 1.1 library.
For random number generation, we pre-compute a few sets of ran-
dom numbers on the CPU and upload them as textures on the GPU
to be accessed by our CUDA programs.

We typically generate 1∼4 million initial random sample points,
which are sufficient for computing a few hundred thousand sam-
ples. Our k ranges between 5∼10. We use 3×3×3 phase groups
as it results in more valid cells per phase group, thus beneficial for
high GPU utilization. For conflict checking, we search the 5×5×5
neighborhood around each cell, in an inside-to-outside fashion sim-



ilar to [Wei 2008]. When using the geodesic distance approxima-
tion, these configurations are the same as the Geodesic distance is
no less than the Euclidean distance. Note that when enabling multi-
ple samples per cell, the conflict checking must include the current
cell itself (in addition to neighbors), as it may contain another sam-
ple that could cause a potential radius conflict within the cell.

4 Spectrum Analysis

Our parallel surface sampling algorithm may introduce bias due to
several factors: the size of the initial random point set Si, the num-
ber of trials k, and the geodesic distance approximation. Conse-
quently we need a way to evaluate the distribution quality of our
samples. While it is possible to parameterize the surface and per-
form spectrum analysis using standard Fourier transform, the re-
sults are often not accurate enough due to the inherent distortion
by surface parameterization. Fortunately, there is a correspondence
of Fourier basis on manifold surfaces called the spectral mesh ba-
sis [Karni and Gotsman 2000], which allows us to perform spec-
trum analysis directly on surfaces without parametrization. Below
we provide a brief review of the basis, explain how to use it to eval-
uate surface sampling bias, and then discuss a few practical issues
and show our results.

Review of spectral mesh basis. Consider a manifold surface
defined by a triangle mesh M: such a mesh consists of a set of
vertices V and their connectivity. We can define a function f that
exists on the mesh by specifying its values at the vertices of the
mesh; then the interior values can be linearly interpolated from the
vertices using the triangle’s barycentric coordinates. IfM has M
vertices, f will be represented with a M -dimensional vector.

The second order derivative of a mesh function can be approx-
imated by a discrete mesh Laplacian L, which locally takes a
weighted average of the differences between the value of f at a
vertex i with its one-ring of neighboring vertices:

(Lf)i =
1

ai

∑
j∈N(i)

wij(fi − fj) (2)

where N(i) is the set of one-ring neighbors of vertex i, wij are
symmetric weights such that wij = wji, and ai is a positive value,
which in our case is the delta area occupied by each vertex. Thus
the sum of ai over all vertices is the total surface area of the mesh.

SinceL is a linear operator, it can be represented as an n×nmatrix,
thus Eq. 2 can be expressed in matrix form as L = A−1Q, where
A is a diagonal matrix whose diagonal elements are the ai, Q is
a symmetric matrix whose diagonal elements are given by Qii =∑
j wij and whose off-diagonal entries are −wij .

It is well-known that the eigenvectors of L define a set of Fourier-
style basis that exists on the mesh, and the associated eigenvalues
capture the frequencies of the basis functions. For example, the
smallest eigenvalue is always 0, and the associated eigenvector is a
constant vector, indicating a zero-frequency (or DC) basis. Larger
eigenvalues correspond to higher-frequency basis.

A number of different choices exist to define the weights wij . We
use the cotangent weighting in [Desbrun et al. 2002], which models
the differential Laplacian on a smooth Riemannian manifold:

wij = (cotαij + cotβij)/2 (3)

whereαij and βij are the two angles opposite to the edge (i, j). Us-
ing the cotangent weights, the derived basis set provides expected
solutions to a few familiar cases. For example, whenM represents
a 2D plane, the result is the real form of 2D Fourier basis; similarly,
whenM is a sphere, the result is real spherical harmonics.

Since the basis set is represented as discrete functions sampled on
the mesh vertices, its robustness may be sensitive to changes in the
mesh connectivity and tessellation. As examined by [Dyer et al.
2007], the cotangent weights provide the best spectral robustness
among several other choices. Of course to obtain high-frequency
basis functions accurately, a fine tessellation of the mesh is still
required in order to avoid aliasing.

Frequency spectrum of surface samples. Computing the spec-
tral basis for a mesh M simply involves constructing the mesh
Laplacian matrix L and finding its eigenvectors. We then define
each eigenvector as a spectral basis function Bk, and the magni-
tude of the associated eigenvalue |λk| as the frequency ωk. In Fig-
ure 5 we show the frequency plots for several models with different
shapes and genuses. In all cases we observe that the squared fre-
quencies ω2

k largely follow a continuous linear curve, and hence
the frequencies ωk follow an inverse quadratic curve. One special
case is the sphere, for which the frequencies exhibit discrete values.
Each discrete frequency at level ` contains 2` + 1 basis functions,
which conforms with the well-known spherical harmonics.

With the basis set, we can easily obtain the frequency spectrum of
a function by projecting it onto each basis Bk. In particular, if the
function is a discrete set of N surface samples, the projection is:

bk =

∫
M

Bk(x)
1

N

N∑
j=1

δ(x− sj) dx =
1

N

N∑
j=1

Bk(sj) (4)

which is simply the average of Bk evaluated at every sample sj .
Note that the basis value at an arbitrary surface sample is interpo-
lated from the triangle vertices. In order to analyze the distribution
of the samples, we compute the power spectrum |bk|2, which is the
square magnitude of |bk|; we then multiply it by the total surface
area of the mesh to normalize the results.

Radial mean and anisotropy. In planar sampling, the distribu-
tion property of random samples is typically measured by the ra-
dial mean and anisotropy of the power spectrum [Lagae and Dutré
2008]. It is straightforward to extend these concepts to general sur-
face sampling. To begin with, we partition the entire range of fre-
quencies into a number of equally spaced bands, each with a band-
width of ωB . Thus each band contains frequencies in the range
of [(` − 1)ωB , ` ωB ], where ` is the band index. As observed in
Figure 5, for all models we tested, the frequency plot roughly fol-
lows an inverse quadratic curve. This means that when partitioning
the frequencies to equally spaced bands, each band will contain a
linearly increasing number of basis functions, which is similar to
spherical harmonics. Thus in many cases we can just follow spher-
ical harmonics, assigning 2`+ 1 basis functions to each band.

Next, we collect the set of power spectrum values {|bk|2} whose
associated frequencies ωk fall into each band:

{|bk|2}` = {|bk|2, ∀ k such that ωk ∈ [(`− 1)ωB , ` ωB ]} (5)

Finally we compute the average and the relative variance of the val-
ues in the set {|bk|2}`, and the results correspond directly to the ra-
dial mean and anisotropy in standard power spectrum analysis [La-
gae and Dutré 2008]. Figure 5 shows the results computed for sev-
eral models with different sampling algorithms including ours.

Implementation details. We implement the computation of mesh
bases in MATLAB. A few practical issues must be considered.
First, the mesh needs to be finely tessellated in order to get accurate
results for high-frequency bases. We typically subdivide our mod-
els to n = 100, 000 vertices. This means the Laplacian matrix L
can be very large. Fortunately since L is extremely sparse, we can
make use of the sparse matrix routines in MATLAB to handle such
large matrices. Note that the tessellation is only needed in order



Double (|S|=420) Bunny (|S|=450) Cup (|S|=433) Hand (|S|=525) Dragon (|S|=490)
Figure 5: Spectrum analysis for models with different shapes and genuses. Top row shows the frequency plot of the derived basis set; the next three rows
compare the radial means (blue) and anisotropy (green) of samples generated using [Turk 1992], our method, and a reference algorithm (using brute force
dart throwing). The x-axis is the basis frequency, the left y-axis is the radial mean, and the right y-axis is the anisotropy. |S| indicates the average number of
samples used for each test. We use 10 runs for each test.

to verify the sample distribution, while the computation of Poisson
disk samples does not require any mesh subdivision.

Second, L is generally not symmetric, but is similar to a real sym-
metric matrix O = A−

1
2QA−

1
2 . Therefore its eigenvalues can be

solved by computing an svd ofQ, which is more stable. The details
can be found in [Dyer et al. 2007]. In addition, we use the spectral
shift method described in [Vallet and Lévy 2008] for efficient com-
putation of a large number of singular values. This can be easily
implemented via MATLAB’s svds routine.

Finally, in order to perform spectrum analysis on a decent number
of surface samples, we need a relatively large number of basis func-
tions. Essentially the highest frequency in the basis set determines
the number of samples we are able to analyze successfully. Note
that increasing the highest frequency leads to a quadratic increase
in the number of basis functions, therefore significantly increasing
the computation time. In practice, we usually compute 10,000 ba-
sis functions, thus the highest relative frequency is roughly 100.
We found this sufficient for evaluating 300 ∼ 500 surface sam-
ples. The typical computation time for 10,000 basis functions on
an 100,000-vertex model is about 2 hours in all our tests.

White noise calibration. Due to numerical inaccuracies in the ba-
sis computation, we have observed a slight linear decay in the cal-
culated spectral power, as shown in Figure 6(b). To correct for this
error, we use white noise spectrum to calibrate the decay. Specif-
ically, we use white noise (uniform random) samples generated on
the surface to compute the spectrum, average the results over many
runs, and then plot the results. In theory this should give a straight
line that is roughly constant. In practice we get a slanted line that
declines at a roughly constant rate. We calculate the slope of the
line, and scale the power spectrum by the inverse of the decay to
bring the white noise spectrum back to straight. For most models

we tested, the decay is about -0.2∼-0.25 over 10,000 basis func-
tions. We apply the correction on the power spectrum |bk|2 com-
puted in all our tests.

Verification of our method. We verify our spectrum analysis
method by using the plane and sphere as two special cases, for
which the analytic basis functions are known. Figure 6(c) and
(d) show the results comparing our results with the ground truth.
In both cases we generate Poisson disk samples using brute force
dart throwing, and average the results over 10 runs. The radial
mean plots exhibit familiar blue noise patterns in both examples.
However, one important difference is that our anisotropy plot is
centered around the -7.0dB line instead of the -10dB line in the
ground truth. This means there is a difference by a factor of 2, and
we found the difference is consistent throughout our tests.

The reason for this double anisotropy is because our derived mesh
basis functions are the real forms of the analytic Fourier basis. This
causes the anisotropy, which measures the variance of the power
spectrum, to differ by a factor of 2, while the radial means remain
the same. In the supplemental document, we show a proof of the
double anisotropy for the case of 1D white noise samples.

Through experiments, we found that our method works well for
general manifold surfaces, regardless of their shape and topology.
Specifically, the ideal radial means and anisotropy using our anal-
ysis are consistent with the blue noise patterns found in familiar
examples. These results are shown in Figure 5 on various models.
Therefore we conclude that our method provides an effective way
for evaluating the distribution quality of surface samples.

Discussion. While the number of basis functions we compute
(currently 10,000) may seem a limiting factor of our technique, note
that the main purpose of our spectrum analysis tool is to evaluate
the distribution property of a surface sampling algorithm. We found



(a) Frequency plot (b) White noise calibration (c) Radial means (d) Anisotropy
Figure 6: Verification of our spectrum analysis method using plane and sphere. The ground truth are generated by analytic Fourier basis and spherical
harmonics respectively. We generate ∼270 samples for the plane and ∼320 samples for the sphere using brute force dart throwing, and average the results
over 10 runs. Note that our radial means are consistent with the ground truth, but the anisotropies differ by a factor of 2 (-7dB vs. -10dB).

that 300 to 500 samples are usually sufficient to characterize an
algorithm, as shown in Fig 5. When it is necessary to evaluate the
distribution property of more samples, we can split the mesh into
smaller partitions, each containing 300 to 500 samples. We can then
analyze each partition separately.

5 Results and Applications

We test our parallel sampling algorithms on a 2.66 GHz PC with
an NVIDIA 280 GTX graphics card. Our programs make use of
CUDPP 1.1 and are compiled using CUDA 2.3. We typically use
1∼4 million initial random sample points Si; the phase group size
is 3×3×3, and the number of trials k = 5 ∼ 10. Figure 9 shows
examples of Poisson disk samples we generated for several models
using different radii, resulting in different sampling densities.

Performance. Figure 7 plots the performance of our algorithm
tested under both Euclidean and approximated Geodesic distance
metrics for three models and two choices of k. The timing includes
all steps listed in Program 1. The breakdown is roughly 30% for two
global sorts, and 70% for the Poisson sampling loop. The remaining
steps take an insignificant amount of time. The plots show that
the performance remains roughly the same for all models. This
shouldn’t be surprising as our algorithm converts all models to a
dense point cloud before sampling, thus the performance is nearly
uniform regardless of the mesh complexity.

We observed that increasing the number of trials k from 5 to 10
generally results in about 10∼15% of drop in performance. On
the other hand, using the approximated geodesic distance vs Eu-
clidean only results in very small performance differences. This
is because 1) our geodesic distance approximation is very fast to
compute; and 2) it results in more sample points being placed on
the surface, therefore increasing the relative performance with re-
spect to the number of samples per second. Overall we are able to
achieve about 180,000 samples per second, which is 5∼10 times
faster than the state of the art such as [Cline et al. 2009].

Efficiency. When the Poisson disk radius is large, there will be
only a small number of valid cells, which leads to poor utilization
of the GPU. Ideally we need a large number of valid cells in order
to achieve high efficiency on the GPU. Thus our algorithm is more
efficient at generating a large number of sample points. In Fig-
ure 8 we show statistics on the number of valid cells and the num-
ber of Poisson disk samples computed using three different radii.
For these examples, the number of valid cells is sufficiently large
to keep the GPU fully utilized. Note that the number of computed
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Figure 7: Performance of our algorithm on three different models.

samples is typically around 1/5 ∼ 1/6 of the number of valid cells,
which is consistent in all our examples.

Quality. We measure the quality of our Poisson disk sampling
using two criteria. First, to verify the density of sample points, we
calculate the radius statistics ρ [Lagae and Dutré 2008] defined as:

ρ =
r/2

(2
√
3 ·N/AM)−1/2

(6)

where r is the Poisson disk radius (note that the typical convention
of the Poisson radius is half of our r), N is the total number of
Poisson disk samples computed, and AM is the surface area of the
mesh. The results are included in Figure 8. In all cases, our ρ
values fall between 0.71∼0.75, which is within the ideal range of
0.65∼0.85 recommended by [Lagae and Dutré 2008].

Second, we apply our proposed spectrum analysis to examine the
radial means and anisotropy. To do so, we tessellate the test models
to about 100,000 vertices, and compute 10,000 spectral mesh basis
functions as described in Section 4, then evaluate the radial means
and anisotropy of the samples’ power spectrum averaged over 10
runs. The number of available mesh basis functions allow us to
evaluate 300∼500 sample points and observe the expected patterns.
The results are shown in Figure 5. For comparison, we provide re-
sults for two additional sampling algorithms: the point repulsion al-
gorithm by [Turk 1992], and a brute force dart throwing algorithm
(using our geodesic distance approximation) as reference. Note that



r=0.0089 r=0.0111 r=0.0139
model #tri area #v.c. #s. r.s. #v.c. #s. r.s. #v.c. #s. r.s.
Bunny 5k 12.37 508k 93k 0.715 354k 61k 0.726 239k 40k 0.736
Dragon 239k 3.99 193k 32k 0.739 128k 21k 0.741 83k 13k 0.743

Lion 306k 3.17 156k 26k 0.741 103k 16k 0.742 67k 11k 0.742
Hand 50k 7.48 338k 58k 0.727 228k 38k 0.736 151k 25k 0.740

Figure 8: From left to right, the table
lists the number of triangles and surface
area for each test model, the number of
valid cells (#v.c.) and Poisson disk sam-
ples (#s) computed using our algorithm
with three difference radii (r), and the
corresponding radius statistics (r.s.).

Figure 9: Poisson disk sampling using our algorithm for three models: Dragon, Buddha, and Lion. For each model we generate three density levels, at
approximately 5K, 10K and 50K sample points. The images are generated at high resolution to allow for zoom-in examination.

k = 1, |Si| = 1M ; k = 10, |Si| = 1000 k = 10, |Si| = 1M

Figure 10: Here we show the comparisons of the radial means and
anisotropy when adjusting the parameters k and |Si|. The tests were per-
formed on the Bunny model (refer to Figure 5).

our results are qualitatively similar to the reference. We do observe
some bias around the principle frequencies, manifested by the im-
perfect shapes of radial means and the slightly higher anisotropy
around those regions. However, overall the results look consistent
with expected blue noise distribution patterns. The point repulsion
algorithm, on the other hand, produces relatively large bias, espe-
cially in the radial means.

A number of parameters influence the quality, such as the number
of trials k and the size of initial sample points Si. In Figure 10 we
show the radial means and anisotropy for sampling on the Bunny
model when reducing k to 1, or reducing the size of the initial sam-
ple points to |Si| = 1000. Note that in both cases the radial means
become flatter compared to when k = 1 and |Si| = 1, 000, 000.

Geodesic distance approximation. To examine the accuracy
of our geodesic distance approximation, in Figure 11 we compute
the percentage of correct distance checking results under both Eu-
clidean and our approximated Geodesic distance metrics. We gen-
erate a large number of uniform random points on the surface. Then
for every pair of points that have an Euclidean distance smaller
than the Poisson radius r, we obtain their true geodesic distance us-
ing [Surazhsky et al. 2005]. This provides the ground truth answer
as to whether the two points should reject or accept each other. At
the same time we use our approximated geodesic distance to com-
pute the prediction, and report the rate of correct predictions. Note

that the Euclidean distance will always predict rejection since we
only consider points within a Euclidean distance of r. This results
in errors when the true geodesic distance is in fact ≥ r. In Fig-
ure 11 we can see that in most cases our approximation provides
more accurate answers, especially for smooth surfaces such as the
double torus. We perform the analysis this way because it’s unreal-
istic and unnecessary for us to have an accurate geodesic distance
approximation over large distances.

Interactive surface sampling. Our parallel surface sampling al-
gorithm is fast and hence suitable for interactive settings where the
user changes the sampling density in real-time. Figure 12 shows
an example where we apply our algorithm on a deformable model,
and the samples are updated interactively in response to the surface
changes. Notice that even though we do not explicitly enforce tem-
poral coherence (as in [Vanderhaeghe et al. 2007; Yu et al. 2009]),
our results nevertheless appear relatively coherent in general. If
stricter coherence is required we could possibly incorporate similar
mechanisms as in [Yu et al. 2009] into our framework.

Surface texturing application. One direct application of our
method is surface texturing [Lagae and Dutré 2005]. This includes
a variety of different types of textures, such as 2D textures, 3D
geometry, spatially varying BRDF or BTF textures. These can
all be achieved in real-time using a method similar to texture-
bombing [Glanville 2004]. The basic idea is to assume that a texture
exemplar is placed at the center of every Poisson disk sample; then
for every surface point to be shaded, we find its closest samples,
project the point at each sample’s local frame to obtain the texture
coords, then interpolate the results to achieve smooth blending. Our
implementation gains an additional benefit in that our hash table is
already a spatial data structure that can be used directly to search
for the closest samples for a query point. Figure 14 shows several
examples of surface texturing using our samples. By changing the
Poisson disk radius, the user can adjust the distribution of textures
in real-time. This does not require any surface parametrization.



Figure 11: Comparison of Euclidean vs. our approximated geodesic distance. We generate the ground truth geodesic distance using [Surazhsky 2005]; then
for a number of different Poisson disk radius r, we select a large number of uniform sample points on the surface, and report the rate of correct acceptance or
rejection for any two points that have an Euclidean distance smaller than r.

Figure 12: Real-time sampling on a deformable Bunny. Note how the
samples maintain a uniform distribution as the surface deforms.

Figure 13: Adaptive sampling guided by user-painted radius function.
While not real-time, our adaptive algorithm can still compute more than
10,000 points in 1∼2 seconds. The right image shows an offline rendering.

Parallel adaptive surface sampling. We extend our parallel uni-
form sampling algorithm to adaptive sampling, where the Poisson
disk radius r is defined by a spatially varying function r(·) on the
surface. Assuming that r(·) has an upper bound rmax, (i.e. the
maximum radius defined by the function), our algorithm works sim-
ilarly to before: first, we partition the initial random points Si into
grid cells using rmax√

3
as the cell size; then, we draw samples in par-

allel for each valid cell belonging to the same phase group. When
checking the radius conflicts, we use max(r(s), r(s′)) as the dis-
tance threshold, where s is an existing sample and s′ is a trial sam-
ple. By using rmax to compute the cell size, no two cells being
processed concurrently can place conflicting samples. On the other
hand, each cell must be allowed to contain multiple samples. Note
that this is already allowed in our hash table (see Section 3.2). Here
we only need to suitably enlarge the number of trials k as well as
the bucket size in order to accommodate additional samples.

In general we can view the grid cells as a simple space partitioning
scheme that allows multiple regions of the surface to be sampled in
parallel. One downside is that it is not adaptive, so its efficiency can
decrease significantly if the radius function r(·) changes dramati-
cally over the surface. In this case, the number of samples placed
in each cell will be highly non-uniform, causing increased search-
ing time in the hash table and divergence in parallel computation.
A more efficient solution would be to use an hierarchical approach
similar to [Wei 2008]. This remains our future work.

Figure 13 shows an example of our adaptive surface sampling algo-
rithm: the user directly paints onto the mesh to indicate a desired ra-
dius function r(·). Our algorithm then recomputes adaptive surface
samples according to r(·). While not yet real-time, our algorithm
capable of computing 10,000 sample points in 1∼2 seconds.

6 Limitations and Future Work

In summary, we have presented a parallel Poisson disk sampling
algorithm suitable for fast sampling on arbitrary surfaces. Our al-
gorithm is flexible and produces high-quality surface samples at in-
teractive rates. For analysis, we introduce a new method, based on
the spectral mesh basis, to evaluate the spectral distribution qual-
ity of our sampling algorithm using radial means and anisotropy.
Our method perform power spectrum analysis directly on manifold
surfaces without requiring parametrization.

There are several limitations of our work that should be addressed
in future work. First, a number of design decisions we made for
the parallel sampling algorithm are centered around high perfor-
mance on a parallel processor. For example, we favor a small num-
ber of phase groups to improve GPU utilization, we use a simple
geodesic distance approximation to avoid expensive computation,
and we currently do not use hierarchical sampling in order to avoid
the overhead in building the associated data structures. Some of
these choices can lead to sampling bias that needs to be examined
more carefully. Second, although we’ve shown the extension of our
algorithm to adaptive surface sampling, it is not currently running
at interactive rates. We would like to exploit hierarchical sampling
or other methods that are more suitable for spatially non-uniform
sampling patterns. Finally, our spectrum analysis currently does not
apply to adaptive sampling, which is still an open research problem.
We would like to investigate this problem in the future.
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