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Abstract

Texture mapping has been a fundamental feature for commodity graphics hardware. However, a key challenge for
texture mapping is how to store and manage large textures on graphics processors. In this paper, we present a tile-
based texture mapping algorithm by which we only have to physically store a small set of texture tiles instead of
a large texture. Our algorithm generates an arbitrarily large and non-periodic virtual texture map from the small
set of stored texture tiles. Because we only have to store a small set of tiles, it minimizes the storage requirement
to a small constant, regardless of the size of the virtual texture. In addition, the tiles are generated and packed into
a single texture map, so that the hardware filtering of this packed texture map corresponds directly to the filtering
of the virtual texture. We implement our algorithm as a fragment program, and demonstrate performance on latest
graphics processors.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture:
Graphics Processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Texture;

Keywords: Texture Mapping, Graphics Hardware, Texture Synthesis

1. Introduction

Texture mapping [Hec86] is a technique to represent surface
details in computer rendered images without adding geomet-
ric complexity. Texture mapping has been a standard feature
for recent consumer-level graphics hardware. The cost of
texture mapping on graphics hardware includes the memory
for storing textures, as well the bandwidth for transferring
and accessing these textures. For applications that use large
amounts of textures, the storage or bandwidth requirements
may prohibit the graphics hardware from achieving real-time
performance.

One possible solution to address these problems is texture
compression [BAC96]. However, existing texture compres-
sion techniques are designed for general images and may
achieve sub-optimal compression ratio for textures that con-
tain repetitive patterns. For this kind of textures, texture syn-
thesis algorithms [Wei02] usually provide better compres-
sion ratio. Unfortunately, previous texture synthesis algo-
rithms are often too slow or too complex for real time ap-
plications on graphics hardware.

We address this problem by implementing a large virtual
texture as a stochastic tiling of a small set of texture image

tiles [CSHD03]. Our technique functions transparently as a
traditional texture mipmap and provides the illusion of the
availability of a large, non-periodic virtual texture while con-
suming only a small amount of texture memory. We imple-
ment our technique as a fragment program and demonstrate
performance on current generation programmable graphics
hardware.

2. Previous Work

A variety of techniques have been proposed to reduce the
texture storage requirements. We classify these techniques
into three categories : Texture Compression, Texture Syn-
thesis, and Texture Tiling.

Texture Compression : One way to reduce texture mem-
ory consumption is to compress the textures. [BAC96] pre-
sented a texture compression scheme based on Vector Quan-
tization (VQ). This technique allows fast texture decoding
while achieving a compression ratio up to 35:1, but may re-
quire the entire texture VQ codebook to be stored on-chip.
Most current graphics hardware vendors adopt a variation
of VQ compression, termed S3TC [S3 98], that does not re-
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(a) Sample
Texture

(b) Texture Tiles
(c) Packed Tiles

(d) Output Virtual Texture

Figure 1: Overview of our system. Given a sample texture (a), we first construct a set of texture tiles [CSHD03] (b) so that adjacent tiles have
continuous pattern across shared edges. We pack the tiles into a single texture map (c) and store it on a graphics processor. This texture map
can then be sampled and filtered via a fragment program to support an arbitrarily large virtual texture (d) without physical storage.

quire the on-chip storage of entire codebooks. Instead, the
textures are compressed by encoding each 4 by 4 pixel tile
into a 64 bit data chunk. Unfortunately, the compression ra-
tio of S3TC is only about 6:1. [Fen03] developed a compres-
sion scheme that could achieve very low bit rates around 4
or 2 bits per texel. However, the compressed data size is still
linearly proportional to the original texture size.

[KE02] proposed a technique to compress textures adap-
tively into blocks of different resolutions. Unlike Vector
Quantization where the compressed data is linearly propor-
tional to the original data size, their technique employees
adaptive block size and may achieve higher compression ra-
tio for sparse textures. However, the technique as presented
does not fully support texture filtering and mipmapping.

A related idea to texture compression is texture caching on
graphics hardware [HG97, TMJ98]. These techniques can
help reduce texture bandwidth, but not texture memory con-
sumption.

Texture Synthesis : Texture compression techniques as
presented above are designed for general texture images.
However, for a specific class of textures that are com-
posed of repeating elements, texture synthesis algorithms
can offer higher compression rates. Techniques such as
[EF01, Wei02, ZG02, KSE�03] only require a small texture
sample to generate arbitrarily large results, so in some sense
the compression ratio can approach infinity for really large
textures. Unfortunately, these techniques are often too slow
or too complex for graphics hardware implementation. In-
stead, they would pre-compute large textures on CPUs and
consume a comparably large amount of texture storage on
graphics chips.

[PFH00, SCA02] proposed a variant of these approaches
by synthesizing texture coordinates rather than texture pixels
on mesh surfaces. Although the result mesh can be rendered
using the original small texture sample, these approaches re-

quire the application programs to pre-compute texture coor-
dinates. In addition the computation is only valid for a spe-
cific combination of texture and mesh model.

Procedural texturing algorithms [Per02, Har01] allow tex-
tures to be computed efficiently on GPUs, but can only re-
produce a limited class of textures such as marble, wood, and
clouds. [MGW01, WWT�03] presented variations of texture
mapping on graphics hardware, but they did not address is-
sues with large textures.

Texture Tiling : An alternative approach is to use texture
synthesis to pre-compute a small set of tiles and use these
tiles to generate a large, non-periodic texture at run time.
[LN03] procedurally combines texture tiles via indirection to
generate large virtual textures. The technique requires only
a small amount of texture memory, but as the authors dis-
cussed, texture filtering and mipmapping are inherently in-
correct with indirection. [CSHD03] introduced Wang Tiles
as texturing primitive and discussed methods to construct
these tiles, but did not address the implementation issues on
graphics hardware.

Computation on GPUs : With the advance of recent
programmable graphics hardwares (GPU), many tech-
niques have been proposed to map general computation
kernels on GPUs to solve different rendering problems
[BFGS03, KW03, Har03]. Our approach also utilizes the
programmability of GPUs, but we present a new algorithm
to resolve an existing hardware problem, texture storage and
bandwidth, rather than directly porting an existing rendering
algorithm to run on GPUs.

3. Overview

Our goal is to design a new algorithm that combines the ad-
vantages of previous approaches. The algorithm should be
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general enough to handle textures with repeating patterns. It
should be simple, efficient, and consumes minimum amount
of texture memory for graphics hardware implementation. It
should support texture filtering and mipmapping. It should
also be non-intrusive to application programs and does not
require modifications on input geometry or texture coordi-
nates.

We attempt to achieve these goals by using Wang Tiles
[CSHD03] to generate large virtual textures directly on
GPUs. Wang Tiles are square tiles in which each tile edge
is assigned a color. A valid tiling requires all shared edges
between tiles to have matching colors. When a set of Wang
Tiles are filled with texture patterns that are continuous
across matching tile edges, a valid tiling from such a set can
produce an arbitrarily large texture without pattern disconti-
nuity. [CSHD03] discussed techniques to construct such tile
sets from sample images, and presented a sequential algo-
rithm for non-periodic tiling.

We present a new texture mapping algorithm based on
Wang Tiles. Our algorithm assembles these tiles on the fly
to build a large virtual texture rather than physical storage.
As a preprocess step, we pack these tiles into a single texture
map, and our packing scheme ensures correct mipmap filter-
ing when a texel is fetched from this tile pack. During run
time, for each texture request (s, t), we first determine which
input tile it lands at based on the position of (s, t) within the
output texture. We then compute the relative offset of (s, t)
within that input tile, and fetch the corresponding texel from
the input pack. Since out packing scheme supports correct
mipmap filtering, the fetched input texel will appear to be
the same as a texel fetched from a large, physically stored
texture map. An overview of our system is illustrated in Fig-
ure 1.

Our contributions are as follows. We present a new tiling
technique to allow random access at arbitrary tiles. We pro-
pose a new method to pack these tiles into texture memory
to support mipmap filtering, and demonstrate an efficient im-
plementation of our algorithm on graphics hardware.

4. Tile-Based Texture Mapping

The goal of texture mapping is to assign a texel Tex(s, t)
for each screen pixel with texture coordinate (s, t). Current
graphic hardware stores the entire texture in the memory hi-
erarchy, and implements Tex(s, t) by fetching and filtering
relevant texels. This approach works well for small textures
that can fit into on-chip texture cache or off-chip texture
memory, but has difficulty storing and accessing large tex-
tures that cannot fit into available texture memory.

We present an alternative approach to Tex(s, t),
TileTex(s, t), that does not require large texture stor-
age. TileTex(s, t) provides the same interface as traditional
Tex(s, t), supporting filtering and mipmapping for large
textures. Internally, TileTex(s, t) represents a large texture
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Figure 2: Graphical illustration of symbols used in our algorithm.

Inputs
S: the sample texture
Th � Tv : the individual tile size in pixels
Kh, Kv : number of horizontal and vertical edge colors
Mh � Mv : output texture size in # of tiles

Preprocessing
Construct the Wang tiles from S // Section 4.1
Pack the tiles into TilePack // Section 4.4
(Ph, Pv) (Kv� Kv, Kh� Kh) // TilePack size in # of tiles
if need CornerPack

Build a dual corner packing CornerPack // Appendix B
// CornerPack has size Pv � Ph

Runtime u f  TileTex(s, t)
(Oh, Ov) floor((s, t) � (Mh, Mv)) %(Mh, Mv)
(CS, CE , CN , CW ) EdgeHash(Oh, Ov) // Equation 2
// The above 2 steps compute TileMap(s, t), as described in Section 4.2.
(Ih, Iv) TileIndex(CS;CE ;CN ;CW ) // Equation 7
(δh, δv) fraction((s, t)� (Mh, Mv))

ue  Tex( Ih+δh
Ph

, Iv+δv
Pv

) // texel fetch from TilePack

if no CornerPack
return ue

else

(Qh, Qv) floor
�

(s, t) � (Mh, Mv) - ( 1
2 ;

1
2 )
�

%(Mh, Mv)

(CB, CR, CT , CL) CornerHash(Qh, Qv) // Equation 12
(Jh, Jv) CornerIndex(CB;CR;CT ;CL) // Equation 10

(εh, εv) fraction
�

(s, t) � (Mh, Mv) - ( 1
2 ;

1
2 )
�

+ ( 1
2 ;

1
2 )

uc  Tex( Jh+εh
Pv

, Jv+εv
Ph

) // texel fetch from CornerPack

return Interpolate(ue, uc)

Table 1: Summary of our algorithm. The graphical illustration of
some symbols is shown in Figure 2, and the Cg code implementation
of Runtime is shown in Appendix C.

as a small set of Wang Tiles, and assembles the tiles into
a large virtual texture on the fly for answering texture
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requests. Note that our algorithm is implemented entirely
on the texture space and does not require applications to
modify the input geometry or texture coordinates.

We now describe our tile-based texture mapping algo-
rithm TileTex(s, t).

4.1. Texture Tile Construction from Input Sample

The inputs of our algorithm consist of a sample texture S, the
individual tile size Th � Tv, the number of horizontal colors
Kh for south (S) and north (N) edges, and the number of
vertical colors Kv for east (E) and west (W) edges. These
input parameters have the same meanings as in [CSHD03]
and we directly adopt their approaches to build the Wang
Tile set.

However, there remains an important difference between
[CSHD03] and our approach in required number of tiles.
[CSHD03] uses a sequential tiling method and requires only
Kh � Kv � 2 tiles to support all possible NW color combi-
nations for non-periodically tiling. Since our approach sup-
ports non-sequential, random tile access, we require Kh

2

� Kv
2 tiles to support all possible edge color combina-

tions. This is a disadvantage of our approach compared to
[CSHD03]. But we haven’t found it to be a major issue
since in practice Kh and Kv are usually small (2 is suffi-
cient for non-periodic tiling). In addition, a tile set with com-
plete color combinations has further advantages such as the
ease to support continuous packing for texture filtering, as
we shall see later.

4.2. Texture Tile Mapping for Random Access

Once we build the tile set, we can tile them to generate ar-
bitrarily large textures. To ensure continuous texture pattern,
the tiling needs to be done so that all shared tile edges have
identical colors. One method to achieve such a tiling is by
putting the tiles sequentially from north to south and west to
east, as shown in [CSHD03]. However, sequential tiling has
a slight disadvantage that if only the SE tile is accessed, we
still need to compute the entire tiling to make sure we end up
with the same tile configuration at the SE corner. This can
cause efficiency issues for graphics hardware implementa-
tion.

One possible solution is to pre-compute the tile mapping
and store the results in an index texture map. However, the
index texture can still be too large for a large output texture
composed of small tiles.

Our approach is to compute the tile mapping on the fly
rather than storing a pre-computed index map. For ren-
dering consistency, we require our mapping computation
to be random-accessible, meaning that the computation of
each tile can be performed independently while ensuring
all shared tile edges have identical colors. This avoids the
sequential dependency problem and results in much faster

computation. Our tile mapping computation, TileMap(s, t),
is as follows:

� For an input texture coordinate (s, t), compute which out-
put tile it lands on. Assume the output texture contains
Mh horizontal tiles and Mv tiles. Then the output tile in-
dex (Oh, Ov) can be computed by:

(Oh, Ov) = floor((s, t)� (Mh, Mv)) %(Mh, Mv) (1)

where % is modular operator. We use % for toroidal
boundary handling but it can easily be extended for other
boundary wrapping modes.
� Use (Oh, Ov) to hash the 4 edge colors CS, CE , CN , CW , of

the output tile, as follows.

CS = hash[hash[Oh] + Ov] %Kh
CE = hash[(Oh + 1) %Mh + hash[2�Ov]] %Kv

CN = hash[hash[Oh] + (Ov + 1) %Mv] %Kh
CW = hash[Oh+ hash[2�Ov]] %Kv

(2)
where hash[] is a 1D hash function which we currently im-
plement via a permutation table as described in [Per02].
We have found it sufficient to use a hash[] table with
max(Mh, Mv) entries. Since Mh and Mv are often small
the caching and storage of hash[] is usually not an issue.

(a) 8 entries (a) 16 entries (a) 32 entries

Figure 3: Effect of hash table size on Equation 2. The image sizes
are 32 � 32, and each pixel color encodes a unique combination of
CS, CE , CN , and CW .

Our mapping computation is inspired by a discrete chaos
map called “Cat-Map” [XGS00]. In Cat-Map, a pair of
integers (x;y) is mapped to a new location (x0;y0) by

x0 = x+ y
y0 = x+2� y

(3)

Cat-Map helps to break diagonal symmetry and increase
randomness in tile mapping computation. In the equations
above, CS and CW are adopted directly from Cat-Map, and
CN and CE are derived from CS and CW to preserve edge
color consistency. For example, consider tile (Oh, Ov) and
the tile on the E side of it (Oh + 1, Ov). The computa-
tion above ensures that CE of (Oh, Ov) is the same as CW

of (Oh + 1, Ov). Similar arguments can be applied to the
computation of CS and CN .
� Select the input tile that has the corresponding 4 edge col-

ors. Since our tile set has complete color combinations,
this is always possible.

In summary, given a texel request at texture coordinate
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(s, t), the above steps compute TileMap(s, t), specifying
which input tile (s, t) lands on. The input tile is designated
by the edge colors CS, CE , CN , and CW .

4.3. Texture Tile Access and Filtering

After knowing which input tile I(CS;CE ;CN ;CW ) the texture
request (s, t) locates on, we need to figure out the relative
position of (s, t) inside the tile to fetch correct texels. This
relative position (δh, δv) can be computed by

(δh, δv) = fraction((s, t)� (Mh, Mv)) (4)

where fraction() takes the fractional part of a floating point
value. For nearest-neighbor texture sampling, the final texel
value TileTex(s, t) will come from the texel nearest (δh, δv)
within the corresponding input tile. For other sampling
modes such as bilinear or anisotropic filtering, the issue will
be more complicated. If (δh, δv) is sufficiently far away from
the tile border, then it is adequate to perform the desired fil-
tering operations within that tile. However, if (δh, δv) is close
to the border, then correct filtering will involve texels from
adjacent tiles in the output texture. Since the output texture is
virtual, this filtering operation cannot be directly performed
on graphics hardware.

There are several possible way to support filtering when
(δh, δv) is close to the border. One possible solution is to
set the texture filtering mode to be point sampling, and use
a fragment shader to perform texture filtering. This is the
most flexible method since we can access any texels across
tile boundaries, but it can be slow since we need to request
many texture samples (8 samples for trilinear mipmap filter-
ing and possibly more for anisotropic filtering). Usually it is
much more efficient to let the texture unit perform texture
filtering since texture reads are relatively slow compared to
arithmetic operations inside a fragment shader.

However, since hardware texture filtering is performed in
the stored texture map, we have to find a way to store the
set of Wang Tiles to support correct filtering. There are sev-
eral possible ways to store the tiles. One solution is to store
each tile as an individual texture. Since most hardware has a
limited number of bind-able textures we can run out of tex-
ture IDs quickly. This approach also does not handle the tile
boundary condition correctly. Another solution is to pack all
the tiles into one single texture map. Assume the input pack-
ing has Ph horizontal tiles and Pv vertical tiles and the desired
input tile is located as the (Ih, Iv)th tile in this packing, then
we can fetch the correct texel for (s, t) with offset (δh, δv) as
follows:

TileTex(s, t) = Tex( Ih+δh
Ph

, Iv+δv
Pv

) (5)

The challenge of this scheme is to make sure that tex-
ture filtering across output tile boundaries can be performed
as filtering in the input tile pack. To achieve this goal, we
present a packing scheme that leverages existing hardware

texture filtering and mipmapping capability, and describe
how to efficiently compute (Ih, Iv) from tile edge colors (CS,
CE , CN , CW ) in this packing scheme.

4.4. Texture Tile Packing and Corner Handling

In packing texture tiles into a single texture map we would
like to achieve three goals. First, to utilize minimum amount
of texture memory, each tile should appear only once in the
packed texture. Second, to avoid filtering artifacts across tex-
ture tile borders, adjacent tiles in the packed texture should
have matching edge colors. Third, the packing scheme
should support efficient indexing. That is, given an edge
color description of the input tile I(CS;CE ;CN ;CW ), the pack-
ing scheme should efficiently compute the horizontal and
vertical indices (Ih, Iv) of I(CS;CE ;CN ;CW ) inside the packed
texture.

We present a new tile packing scheme, TilePack, that at-
tempts to satisfy the above requirements. For clarify, we first
describe how to pack tiles in 1D. We then describe how to
extend it to 2D.

Assuming we have a set of Wang Tiles that has Kv verti-
cal edge colors but only 1 horizontal edge color. Our goal
is to pack these tiles in a horizontal row so that adjacent
tiles have matching vertical edge color (including the left-
most and right-most tiles since the packed texture needs to
be tileable). We encode all the vertical edge colors into inte-
gers in the range [0::Kv�1]. Given a tile with west and east
edge colors (e1, e2), we use the following mapping to deter-
mine the horizontal position of that tile inside the packed 1D
texture: (The thought process for deriving this formula can
be found in Appendix A.)

TileIndex1D(e1, e2) =

8>>>><
>>>>:

0; e1 = e2 = 0
e1

2 +2� e2�1; e1 > e2 > 0
2� e1 + e2

2
; e2 > e1 � 0

(e1 +1)2
�2; e1 = e2 > 0

(e1 +1)2
�1; e1 > e2 = 0

(6)

TileIndex1D satisfies the three requirements listed above.
It packs the Kv�Kv tiles into a horizontal 1D texture map
without using any tile more than once. It ensures all shared
tile edges have identical colors. In addition, it is efficient to
compute, involving only multiplications, additions, and sub-
tractions. An example of 1D packing with Kv = 3 is shown
in Figure 4.

We can implement 2D TileIndex by TileIndex1D on
horizontal and vertical colors orthogonally, as shown in
Equation 7. Given a tile with edge colors (CS, CE , CN ,
CW ), the horizontal index Ih of the tile is computed by
TileIndex1D(CW , CE ), while the vertical index Iv of the tile
is computed by TileIndex1D(CS, CN). Since TileIndex1D sat-
isfies the three requirements in 1D, and (Ih, Iv) are computed
orthogonally, it can be easily seen that TileIndex meets the
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Figure 4: Tile packing examples. The illustration on the left shows
a 1D tile packing with 3 vertical colors, and the one on the right
shows a 2D tile packing with 3 vertical and 3 horizontal colors.

three requirements in 2D. An example of 2D packing with
Kh = 3 and Kv = 3 is shown in Figure 4.

(Ih, Iv) = TileIndex(CS;CE ;CN ;CW ) =

(TileIndex1D(CW , CE ), TileIndex1D(CS, CN)) (7)

One of the primary advantages of our tile packing scheme
is that it allows us to perform texture filtering directly via
the hardware texturing unit. Since adjacent tiles in the pack-
ing share matching edge colors, there will be no pattern
discontinuity when performing bilinear filtering across tile
edges. However, bilinear filtering can be theoretically in-
correct across tile corners. One solution to this problem is
to simply ignore it. We have found that this corner artifact
noticeable only when there is a distinctive object or pattern
placed near a tile corner. For textures with uniform repetitive
patterns, this is usually not an issue.

Another solution is to add an additional tile packing with
all possible corner combinations. This solution would al-
low correct filtering across tile corners, but consumes ex-
tra amount of texture memory and shader computations. The
derivation of this corner packing is analogous to the tile
packing above, and we refer the reader to Appendix B for
more details.

5. Results and Discussion

We have implemented our algorithm as a Cg fragment pro-
gram [MGAK03] as shown in Appendix C. Our approach
supports correct mipmap filtering across tile boundaries, as
demonstrated in Figure 5. The performance of our imple-
mentation measured on a 350 MHz Geforce FX 5600 graph-
ics processor [NVI03] is 2.7 million trilinearly-filtered tex-
ture samples per second without any hand optimized as-
sembly code. This is slower than standard texture mapping
which achieved at least 60 million texture samples per sec-
ond on the same graphics card. However, the speed and stor-

age requirement of our algorithm remain roughly constant
regardless of the size of the output virtual texture. In com-
parison, the speed and storage requirement of traditional tex-
ture mapping degrade with increasing texture sizes, and most
graphics chips impose an upper limit on the available texture
size.y

At small texture sizes, our approach is slower than tra-
ditional texture mapping due to the run-time computation
of TileMap(s, t) (Section 4.2), which would consume 8 ac-
cesses to the hash[] texture per request. For speedup, we have
provided an alternative implementation that precomputes the
TileMap(s, t) into a separate texture map. This approach has
a better performance with more than 20 million trilinearly-
filtered samples per second, with the cost of an extra mem-
ory for storing the TileMap(s, t). A better solution would be
to utilize a built-in hash generator in the hardware, but un-
fortunately this feature is not yet available in current gener-
ation graphics chips. With such a hardware hash generator,
we believe our first implementation would achieve compara-
ble performance with respect to traditional texture mapping
at small texture sizes.

Another limitation of our approach is that our tile filter-
ing scheme is theoretically incorrect at lower mipmap levels
where the filtering can access texels from more than 2 tiles.
In practice, this is usually not an issue for textures with re-
peating patterns since the patterns reduce to homogeneous
void at lower resolutions anyway. In addition this is an in-
herent limitation for any tile-based texturing algorithms un-
less you are willing to precompute and store lower mipmap
levels for the output virtual texture.

Our approach can be implemented as part of the driver and
exposed as an extension of standard API calls. For example,
the Preprocessing part in Table 1 can be implemented as
a special case of glTexImage2D, and the Runtime part can
be implemented by letting the driver replacing any texture
access code to a tile-based texture map with our fragment
program. The result would be a transparent driver imple-
mentation that allows application programmers to access our
tile-based texture map just like a traditional texture map.

6. Conclusions and Future Work

We present a tile-based texture mapping algorithm that al-
lows the creation of a large, non-periodic, virtual texture map
from a small set of pre-computed tiles. We propose a novel
packing scheme that allows correct texture filtering across
tile boundaries, as well a run time algorithm for sampling in-
dividual texels on the virtual texture map that can be directly
implemented as a fragment program on current generation
graphics processors.

y The maximum texture size is 4K � 4K pixels on a Geforce FX
5600 GPU.
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(a) Tiles (b) Result with correct packing (c) Result with incorrect packing

Figure 5: Filtering artifact example. When the input tile set (a) is correctly packed into a single texture map via our method, the output texture,
when rendered with bilinear mipmap filtering, exhibits no border artifact as shown in (b). However, if the input tiles are not properly packed,
the rendering result may exhibit noticeable boundary artifacts as shown in (c).

There are several possible directions for future work. Our
hash operation in Equation 2 relies on an input hash ta-
ble, which consumes extra memory and additional texture
fetches. This limitation can be overcome by replacing the
hash[] table in Equation 2 with a well behaved hash al-
gorithm such as MD5 implemented either as a fragment
program or as part of the graphics hardware. However,
since most hash functions require bitwise operations, a frag-
ment program implementation would require integer and bit-
wise arithmetic beyond the floating-point-only instructions
in current generation graphics chips. Another potential fu-
ture work is to extend our approach to 3D textures. This
would involve more shader program computations to sam-
ple 3D tiles, but could provide even higher compression ratio
compared to 2D textures.
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Appendix A: Derivation of Equation 6

Assume we have N + 1 tile edges labeled from 0 to N. Our
goal is to connect them in a tour so that each pair of edge
combination appears exactly once. (This is another way to
state the requirements listed in Section 4.4.) Mathematically,
we need to find the Euler circuit for a directed, complete
graph whose nodes are labeled from 0 to N. Denote the Euler
circuit of nodes 0 to N as [0*) N]. Then, we can construct
[0*) N] from [0 *) (N�1)] via induction as follows.

[0 *) N] = (8)

[0 *) (N�1)]! N! 1! N! 2 � � �N! (N�1)! N! 0

Let FN+1 denote TileIndex1D with edges 0 to N. Es-
sentially, FN+1(e1;e2) indicates the position of edge pair
e1 ! e2 within [0*) N]. It can be derived by a similar in-
duction process, as shown below.

FN+1(e1;e2)=

8>>>><
>>>>:

FN(e1;e2) e1 � N�1; e2 � N�1
e1

2 +2� e2�1 e1 = N; 1� e2 � N�1
2� e1 + e2

2 e2 = N; 0� e1 � N�1
(e1 +1)2

�2 e1 = e2 = N
(e1 +1)2

�1 e1 = N; e2 = 0
(9)

Finally, Equation 6 can be derived by unrolling Equation 9
through successively smaller values of N. You can also ver-
ify the correctness of Equation 6 by plugging it into Equa-
tion 9.
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Figure 6: Dual packing examples.

Appendix B: Corner Handling

We derive the corner packing, CornerPack, by observing that
CornerPack can be considered as the “dual” of TilePack.
Since TilePack contains tiles with all possible edge color
combinations via Equation 7, we can use the the same mech-
anism to pack corners with all possible edge color combi-
nations. Let CB;CR;CT ;CL be the bottom, right, top, and left
edge colors around a corner. We can pack the corners as fol-
lows.

(Jh, Jv) = CornerIndex(CB;CR;CT ;CL) =

(TileIndex1D(CL, CR);TileIndex1D(CB, CT )) (10)

The computation is very similar to Equation 7. The ma-
jor difference is that in Equation 7, the vertical/horizontal
tile locations are determined by horizontal/vertical tile edge
colors, while in Equation 10 the vertical/horizontal tile loca-
tions are determined by vertical/horizontal corner edge col-
ors. As a corollary, the height/width of CornerPack is the
same as the width/height of TilePack. CornerPack also in-
herits all the desirable properties from TilePack: (1) each
corner appears only once in CornerPack, (2) adjacent cor-
ners in CornerPack have matching edge colors, and (3) the
computation is as efficient as TilePack. An example of this
dual corner packing is shown in Figure 6.

The computations involved in accessing CornerPack is
also very similar to the access of TilePack shown above, with
some minor differences due to the fact that we are locating
the nearest corner rather than the containing tile. The steps
are as follows.

� Given a texel request (s, t), we first compute which corner
(Qh, Qv) is the nearest.

(Qh, Qv) = floor
�

(s, t)� (Mh, Mv) - ( 1
2 ;

1
2 )
�

%(Mh, Mv)

(11)
Note the similarity of the computation of (Qh, Qv) with
that of (Oh, Ov) in Equation 1. The only difference is the
shift by ( 1

2 ;
1
2 ) which enables floor() to locate the nearest

corner for (s, t).
� Use (Qh, Qv) to hash the colors of the 4 edges at bottom,

right, top, and left of the corner.

CB = hash[(Qh + 1) %Mh + hash[2 � Qv]] %Kv

CR = hash[hash[(Qh + 1) %Mh] + (Qv + 1) %Mv] %Kh
CT = hash[(Qh + 1) %Mh + hash[2 � ((Qv + 1) %Mv)]] %Kv

CL = hash[hash[Qh] + (Qv + 1) %Mv] %Kh
(12)
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This corner edge color computation is consistent with the
tile edge computation in Equation 2 and is derived from
it by proper changing of variables. For example, if (s, t)
locates near the NE corner of a tile, then CB computed in
Equation 12 will be the same as CE computed in Equa-
tion 2.

� For corner (CB;CR;CT ;CL), use Equation 10 to locate its
index (Jh, Jv) in CornerPack. Observe that (Jh, Jv) also in-
dicates the location of the tile in CornerPack which has
(CB;CR;CT ;CL) as the NE corner.
� Derive the relative offset of (s, t) with tile (Jh, Jv).

(εh, εv) = fraction
�

(s, t) � (Mh, Mv) - ( 1
2 ;

1
2 )
�
+( 1

2 ;
1
2 )

(13)
Note the similarity of this computation with the computa-
tion of (δh, δv) in Equation 4. The only difference is the
shift by ( 1

2 ;
1
2 ) which enables us to compute the correct

offset of (s, t) relative to the SW corner of tile (Jh, Jv).
� Fetch the desired texel from CornerPack.

Tex( Jh+εh
Pv

, Jv+εv
Ph

) (14)

This value fetched from CornerPack is then interpolated
with the texel fetched from TilePack to obtain the final texel
value. The interpolation depends on how close is (s, t) to a
tile corner.

Appendix C: The Cg Program of Our Algorithm

Some math symbols shown below are program constants as
defined in Section 4. For simplicity, we have skipped the
code for corner handling.

struct FragmentInput
{

float4 tex : TEX0;
float4 col : COL0;

};

struct FragmentOutput
{

float4 col : COL;
};

float2 mod(const float2 a, const float2 b)
{

return floor(frac(a/b)*b);
}

float EdgeOrdering(const float x, const float y)
{

float result;
if(x < y) result = (2*x + y*y);
else if(x == y)

if(x > 0) result = ((x+1)*(x+1) - 2);
else result = 0;

else

if(y > 0) result = (x*x + 2*y - 1);
else result = ((x+1)*(x+1) - 1);

return result;
}

float2 TileLocation(const float4 e)
{

float2 result;
result.x = EdgeOrdering(e.w, e.y);
result.y = EdgeOrdering(e.x, e.z);
return result;

}

float4 Hash(uniform samplerRECT hashTexture,
const float4 input)

{
return texRECT(hashTexture,

frac(input.xy/HASH_SIZE) * HASH_SIZE);
}

FragmentOutput fragment(const FragmentInput input,
uniform sampler2D tilesTexture,
uniform sampler2D cornersTexture,
uniform samplerRECT hashTexture)

{
FragmentOutput output;
float2 mappingScale = float2(Mh , Mv);
float2 mappingAddress = input.tex.xy * mappingScale;
float4 numColors = float4(Kh , Kv, Kh , Kv);
float2 thisVirtualTile = mod(mappingAddress, mappingScale);
float2 nextVirtualTile = thisVirtualTile.xy + float2(1, 1);
nextVirtualTile = frac(nextVirtualTile/mappingScale)*mappingScale;
float4 edgeColors;
edgeColors.x = Hash(hashTexture,

Hash(hashTexture, thisVirtualTile.x) + thisVirtualTile.y);
edgeColors.y = Hash(hashTexture,

nextVirtualTile.x + Hash(hashTexture, 2*thisVirtualTile.y));
edgeColors.z = Hash(hashTexture,

Hash(hashTexture, thisVirtualTile.x) + nextVirtualTile.y);
edgeColors.w = Hash(hashTexture,

thisVirtualTile.x + Hash(hashTexture, 2*thisVirtualTile.y));
edgeColors = frac(edgeColors/numColors)*numColors;
float2 inputTile = TileLocation(edgeColors);
float2 tileScale = float2(Ph , Pv);
float2 tileScaledTex = input.tex.xy * float2(Mh /Ph, Mv/Pv);
output.col = tex2D(tilesTexture,

(inputTile.xy + frac(mappingAddress))/tileScale,
ddx(tileScaledTex), ddy(tileScaledTex));

return output;
}

Notice the use of ddx and ddy in the last tex2D() call.
This is necessary to avoid spuriously large texture coordinate
derivatives near tile boundaries which can cause low resolu-
tion mipmap levels to be accessed and produce over-blurry
results.
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(a) Tile packing (b) Result with only tile packing (c) Result with only corner packing

(d) Corner packing (e) Result with proper blending from (b) and (c) (f) Blending weight

Plate 1: Corner artifact example. The input tile set (a) contains 4 corner features shown as red dots. The results shown in (e) and (b) are
rendering with and without corner handling, respectively. Note that result (b) contains noticeable errors around the upper right region of the
polygon, while in result (e) the errors are much diminished. For reference, the result produced from only corner packing is shown in (c), and
the blending weight is shown in (f).

Detailed view of the upper-right region of (e) Detailed view of the upper-right region of (b)

Detailed view of the upper-middle region of (e) Detailed view of the upper-middle region of (b)

Plate 2: Detailed views of corner artifacts. Images on the right have more severe ghosting red lines, compared to images on the left.
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